Self-Assembly of Accumulated Sphingolipids into Cytotoxic Fibrils in Globoid Cell Leukodystrophy and Their Inhibition by Small Molecules In Vitro
Language English Country United States Media print-electronic
Document type Journal Article
PubMed
40603002
PubMed Central
PMC12269364
DOI
10.1021/acsnano.5c05498
Knihovny.cz E-resources
- Keywords
- apoptosis, galactosylceramide, galactosylsphingosine, globoid cell leukodystrophy, self-assembly, small molecule inhibitors, sphingolipids,
- MeSH
- Amyloid * metabolism chemistry MeSH
- Galactosylceramidase metabolism antagonists & inhibitors MeSH
- Galactosylceramides * chemistry metabolism MeSH
- Leukodystrophy, Globoid Cell * metabolism pathology drug therapy MeSH
- Small Molecule Libraries * pharmacology chemistry MeSH
- Humans MeSH
- Psychosine * chemistry metabolism analogs & derivatives MeSH
- Sphingolipids * metabolism chemistry MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Amyloid * MeSH
- Galactosylceramidase MeSH
- Galactosylceramides * MeSH
- Small Molecule Libraries * MeSH
- Psychosine * MeSH
- Sphingolipids * MeSH
Globoid cell leukodystrophy (GLD) is a rare hereditary inborn error of metabolism due to recessive mutations that cause loss of function of the enzyme galactosylceramidase (GALC). This results in the accumulation of the sphingolipids galactosylceramide (GalCer) and galactosylsphingosine (GalSph) in the lysosomes of neuronal cells. The accumulated GalCer and GalSph in cerebral macrophages of GLD patients are neurotoxic to oligodendrocytes and Schwann cells, leading to demyelination in the nervous system. The disease typically presents with infantile onset in the first six months of life and death by age 2. Here, we identified a supramolecular structure of GalCer and GalSph that may contribute to GLD pathology. Using biophysical assays commonly used for studying proteinaceous amyloids, e.g., amyloid-specific dyes, microscopical imaging, and a series of analytical methods (FTIR, PXRD, and SAXS), we demonstrate that both GalCer and GalSph can self-assemble in vitro into highly organized fibrils reminiscent of fibrils of amyloidogenic proteins. These fibrils exhibit significant cytotoxicity to both neuronal and oligodendroglial cells. Using an inhibitor of the GALC enzyme in cell culture to mimic the GLD pathophysiology, we could detect the accumulation of these fibrils in cells. We also observed that small molecules, which are bona fide inhibitors of proteinaceous amyloids, effectively mitigated the formation of the GalCer and GalSph fibrillar structures in vitro. Finally, the small molecule ameliorated the cytotoxic effects of the sphingolipid fibrils in SH-SY5Y cells, suggesting a potential avenue for therapeutic intervention in GLD orphan disease.
Department of Chemistry Aarhus University Aarhus C 8000 Denmark
Department of Life Sciences Ben Gurion University of the Negev Beer Sheva 8855630 Israel
Molecular Foundry Lawrence Berkeley National Laboratory Berkeley California 94720 United States
Sagol School of Neuroscience Tel Aviv University Tel Aviv 6997801 Israel
See more in PubMed
Mistry P. K., Kishnani P., Wanner C., Dong D., Bender J., Batista J. L., Foster J.. Rare Lysosomal Disease Registries: Lessons Learned over Three Decades of Real-World Evidence. Orphanet J. Rare Dis. 2022;17(1):362. doi: 10.1186/s13023-022-02517-0. PubMed DOI PMC
Massaro G., Geard A. F., Liu W., Coombe-tennant O., Waddington S. N., Baruteau J., Gissen P., Rahim A. A.. Gene Therapy for Lysosomal Storage Disorders: Ongoing Studies and Clinical Development. Biomolecules. 2021;11:611. doi: 10.3390/biom11040611. PubMed DOI PMC
Ceravolo G., Zhelcheska K., Squadrito V., Pellerin D., Gitto E., Hartley L., Houlden H.. Update on Leukodystrophies and Developing Trials. J. Neurol. 2024;271(1):593–605. doi: 10.1007/s00415-023-11996-5. PubMed DOI PMC
Maghazachi A. A.. Globoid Cell Leukodystrophy (Krabbe Disease): An Update. Immunotargets Ther. 2023;12:105–111. doi: 10.2147/ITT.S424622. PubMed DOI PMC
Abed Rabbo M., Khodour Y., Kaguni L. S., Stiban J.. Sphingolipid Lysosomal Storage Diseases: From Bench to Bedside. Lipids Health Dis. 2021;20(1):44. doi: 10.1186/s12944-021-01466-0. PubMed DOI PMC
Quinville B. M., Deschenes N. M., Ryckman A. E., Walia J. S.. A Comprehensive Review: Sphingolipid Metabolism and Implications of Disruption in Sphingolipid Homeostasis. Int. J. Mol. Sci. 2021;22(11):5793. doi: 10.3390/ijms22115793. PubMed DOI PMC
Van Eijk M., Ferra M. J., Boot R. G., Aerts J. M. F. G.. Lyso-Glycosphingolipids: Presence and Consequences. Essays Biochem. 2020;64(3):565–578. doi: 10.1042/EBC20190090. PubMed DOI PMC
Feltri M. L., Weinstock N. I., Favret J., Dhimal N., Wrabetz L., Shin D.. Mechanisms of Demyelination and Neurodegeneration in Globoid Cell Leukodystrophy. Glia. 2021;69(10):2309–2331. doi: 10.1002/glia.24008. PubMed DOI PMC
Deane J. E., Graham S. C., Kim N. N., Stein P. E., McNair R., Cachón-González M. B., Cox T. M., Read R. J.. Insights into Krabbe Disease from Structures of Galactocerebrosidase. Proc. Natl. Acad. Sci. U.S.A. 2011;108(37):15169–15173. doi: 10.1073/pnas.1105639108. PubMed DOI PMC
Feltri M. L., Weinstock N. I., Favret J., Dhimal N., Wrabetz L., Shin D.. Mechanisms of Demyelination and Neurodegeneration in Globoid Cell Leukodystrophy. Glia. 2021;69(10):2309. doi: 10.1002/glia.24008. PubMed DOI PMC
Beltran-Quintero M. L., Bascou N. A., Poe M. D., Wenger D. A., Saavedra-Matiz C. A., Nichols M. J., Escolar M. L.. Early Progression of Krabbe Disease in Patients with Symptom Onset between 0 and 5 Months. Orphanet J. Rare Dis. 2019;14(1):46. doi: 10.1186/s13023-019-1018-4. PubMed DOI PMC
Bascou N., Derenzo A., Poe M. D., Escolar M. L.. A Prospective Natural History Study of Krabbe Disease in a Patient Cohort with Onset between 6 Months and 3 Years of Life. Orphanet J. Rare Dis. 2018;13(1):126. doi: 10.1186/s13023-018-0872-9. PubMed DOI PMC
Wenger D. A., Luzi P., Rafi M. A.. Advances in the Diagnosis and Treatment of Krabbe Disease. Int. J. Neonatal Screening. 2021;7(3):57. doi: 10.3390/ijns7030057. PubMed DOI PMC
Rafi M. A., Luzi P., Zlotogora J., Wenger D. A.. Two Different Mutations Are Responsible for Krabbe Disease in the Druze and Moslem Arab Populations in Israel. Hum. Genet. 1996;97(3):304–308. doi: 10.1007/BF02185759. PubMed DOI
Settembre C., Perera R. M.. Lysosomes as Coordinators of Cellular Catabolism, Metabolic Signalling and Organ Physiology. Nat. Rev. Mol. Cell Biol. 2024;25(3):223–245. doi: 10.1038/s41580-023-00676-x. PubMed DOI
Servín Muñoz I. V., Ortuño-Sahagún D., Griñán-Ferré C., Pallàs M., González-Castillo C.. Alterations in Proteostasis Mechanisms in Niemann–Pick Type C Disease. Int. J. Mol. Sci. 2024;25(7):3806. doi: 10.3390/ijms25073806. PubMed DOI PMC
Malara M., Prestel M., Tahirovic S.. Endo-Lysosomal Dysfunction and Neuronal-Glial Crosstalk in Niemann-Pick Type C Disease. Philos. Trans. R. Soc., B. 2024;379(1899):20220388. doi: 10.1098/rstb.2022.0388. PubMed DOI PMC
Gillett D. A., Wallings R. L., Uriarte Huarte O., Tansey M. G.. Progranulin and GPNMB: Interactions in Endo-Lysosome Function and Inflammation in Neurodegenerative Disease. J. Neuroinflammation. 2023;20(1):1–22. doi: 10.1186/s12974-023-02965-w. PubMed DOI PMC
Ketata I., Ellouz E.. From Pathological Mechanisms in Krabbe Disease to Cutting-Edge Therapy: A Comprehensive Review. Neuropathology. 2024;44(4):255–277. doi: 10.1111/neup.12967. PubMed DOI
Paul A., Jacoby G., Laor Bar-Yosef D., Beck R., Gazit E., Segal D.. Glucosylceramide Associated with Gaucher Disease Forms Amyloid-like Twisted Ribbon Fibrils That Induce α-Synuclein Aggregation. ACS Nano. 2021;15(7):11854–11868. doi: 10.1021/acsnano.1c02957. PubMed DOI PMC
D Shmueli M., Hizkiahou N., Peled S., Gazit E., Segal D.. Total Proteome Turbidity Assay for Tracking Global Protein Aggregation in the Natural Cellular Environment. J. Microbiol. Methods. 2017;4(2):1. doi: 10.14440/JBM.2017.148. PubMed DOI PMC
Zhao R., So M., Maat H., Ray N. J., Arisaka F., Goto Y., Carver J. A., Hall D.. Measurement of Amyloid Formation by Turbidity AssaySeeing through the Cloud. Biophys. Rev. 2016;8(4):445–471. doi: 10.1007/s12551-016-0233-7. PubMed DOI PMC
Yakupova E. I., Bobyleva L. G., Vikhlyantsev I. M., Bobylev A. G.. Congo Red and Amyloids: History and Relationship. Biosci. Rep. 2019;39(1):20181415. doi: 10.1042/bsr20181415. PubMed DOI PMC
Paravastu A. K., Qahwash I., Leapman R. D., Meredith S. C., Tycko R.. Seeded Growth of β-Amyloid Fibrils from Alzheimer’s Brain-Derived Fibrils Produces a Distinct Fibril Structure. Proc. Natl. Acad. Sci. U.S.A. 2009;106(18):7443–7448. doi: 10.1073/pnas.0812033106. PubMed DOI PMC
Kollmer M., Close W., Funk L., Rasmussen J., Bsoul A., Schierhorn A., Schmidt M., Sigurdson C. J., Jucker M., Fändrich M.. Cryo-EM Structure and Polymorphism of Aβ Amyloid Fibrils Purified from Alzheimer’s Brain Tissue. Nat. Commun. 2019;10(1):1–8. doi: 10.1038/s41467-019-12683-8. PubMed DOI PMC
Lührs T., Ritter C., Adrian M., Riek-Loher D., Bohrmann B., Döbeli H., Schubert D., Riek R.. 3D Structure of Alzheimer’s Amyloid-β(1–42) Fibrils. Proc. Natl. Acad. Sci. U.S.A. 2005;102(48):17342–17347. doi: 10.1073/pnas.0506723102. PubMed DOI PMC
Makky A., Bousset L., Polesel-Maris J., Melki R.. Nanomechanical Properties of Distinct Fibrillar Polymorphs of the Protein α-Synuclein. Sci. Rep. 2016;6(1):1–10. doi: 10.1038/srep37970. PubMed DOI PMC
Ghosh D., Singh P. K., Sahay S., Jha N. N., Jacob R. S., Sen S., Kumar A., Riek R., Maji S. K.. Structure Based Aggregation Studies Reveal the Presence of Helix-Rich Intermediate during α-Synuclein Aggregation. Sci. Rep. 2015;5(1):1–15. doi: 10.1038/srep09228. PubMed DOI PMC
McGlinchey R. P., Ni X., Shadish J. A., Jiang J., Lee J. C.. The N Terminus of α-Synuclein Dictates Fibril Formation. Proc. Natl. Acad. Sci. U.S.A. 2021;118(35):e2023487118. doi: 10.1073/pnas.2023487118. PubMed DOI PMC
de la Arada I., González-Ramírez E. J., Alonso A., Goñi F. M., Arrondo J.-L. R.. Exploring Polar Headgroup Interactions between Sphingomyelin and Ceramide with Infrared Spectroscopy. Sci. Rep. 2020;10(1):17606. doi: 10.1038/s41598-020-74781-8. PubMed DOI PMC
Bou Khalil M., Carrier D., Wong P. T. T., Tanphaichitr N.. Polymorphic Phases of Galactocerebrosides: Spectroscopic Evidence of Lamellar Crystalline Structures. Biochim. Biophys. Acta, Biomembr. 2001;1512(2):158–170. doi: 10.1016/S0005-2736(01)00319-4. PubMed DOI
Boggs J. M.. Lipid Intermolecular Hydrogen Bonding: Influence on Structural Organization and Membrane Function. Biochim. Biophys. Acta. 1987;906(3):353–404. doi: 10.1016/0304-4157(87)90017-7. PubMed DOI
Tfayli A., Guillard E., Manfait M., Baillet-Guffroy A.. Thermal Dependence of Raman Descriptors of Ceramides. Part I: Effect of Double Bonds in Hydrocarbon Chains. Anal. Bioanal. Chem. 2010;397(3):1281–1296. doi: 10.1007/s00216-010-3614-y. PubMed DOI
Tfayli A., Guillard E., Manfait M., Baillet-Guffroy A.. Molecular Interactions of Penetration Enhancers within Ceramides Organization: A Raman Spectroscopy Approach. Analyst. 2012;137(21):5002–5010. doi: 10.1039/c2an35220f. PubMed DOI
Guillard E., Tfayli A., Manfait M., Baillet-Guffroy A.. Thermal Dependence of Raman Descriptors of Ceramides. Part II: Effect of Chains Lengths and Head Group Structures. Anal. Bioanal. Chem. 2011;399(3):1201–1213. doi: 10.1007/s00216-010-4389-x. PubMed DOI
Kováčik A., Vogel A., Adler J., Pullmannová P., Vávrová K., Huster D.. Probing the Role of Ceramide Hydroxylation in Skin Barrier Lipid Models by 2H Solid-State NMR Spectroscopy and X-Ray Powder Diffraction. Biochim. Biophys. Acta, Biomembr. 2018;1860(5):1162–1170. doi: 10.1016/j.bbamem.2018.02.003. PubMed DOI
Shah J., Atienza J. M., Rawlings A. V., Shipley G. G.. Physical Properties of Ceramides: Effect of Fatty Acid Hydroxylation. J. Lipid Res. 1995;36(9):1945–1955. doi: 10.1016/S0022-2275(20)41113-7. PubMed DOI
Safinya C. R., Deek J., Beck R., Jones J. B., Leal C., Ewert K. K., Li Y.. Liquid Crystal Assemblies in Biologically Inspired Systems. Liq. Cryst. 2013;40(12):1748–1758. doi: 10.1080/02678292.2013.846422. PubMed DOI PMC
Jacoby G., Cohen K., Barkan K., Talmon Y., Peer D., Beck R.. Metastability in Lipid Based Particles Exhibits Temporally Deterministic and Controllable Behavior. Sci. Rep. 2015;5:9481. doi: 10.1038/srep09481. PubMed DOI PMC
Nicaise A. M., Bongarzone E. R., Crocker S. J.. A Microglial Hypothesis of Globoid Cell Leukodystrophy Pathology. J. Neurosci. Res. 2016;94(11):1049. doi: 10.1002/jnr.23773. PubMed DOI PMC
Watanabe T., Tsuboi K., Matsuda N., Ishizuka Y., Go S., Watanabe E., Ono A., Okamoto Y., Matsuda J.. Genetic Ablation of Saposin-D in Krabbe Disease Eliminates Psychosine Accumulation but Does Not Significantly Improve Demyelination. J. Neurochem. 2023;166(4):720–746. doi: 10.1111/jnc.15876. PubMed DOI
Balasubramanian K., Mirnikjoo B., Schroit A. J.. Regulated Externalization of Phosphatidylserine at the Cell Surface: IMPLICATIONS FOR APOPTOSIS. J. Biol. Chem. 2007;282(25):18357–18364. doi: 10.1074/jbc.M700202200. PubMed DOI
Gomes M. T., Palasiewicz K., Gadiyar V., Lahey K., Calianese D., Birge R. B., Ucker D. S.. Phosphatidylserine Externalization by Apoptotic Cells Is Dispensable for Specific Recognition Leading to Innate Apoptotic Immune Responses. J. Biol. Chem. 2022;298(7):102034. doi: 10.1016/j.jbc.2022.102034. PubMed DOI PMC
Qi G., Li H., Zhang Y., Li C., Xu S., Wang M., Jin Y.. Smart Plasmonic Nanorobot for Real-Time Monitoring Cytochrome c Release and Cell Acidification in Apoptosis during Electrostimulation. Anal. Chem. 2019;91(2):1408–1415. doi: 10.1021/acs.analchem.8b04027. PubMed DOI
Sakamuru S., Attene-Ramos M. S., Xia M.. Mitochondrial Membrane Potential Assay. Methods Mol. Biol. 2016;1473:17–22. doi: 10.1007/978-1-4939-6346-1_2. PubMed DOI PMC
Pieczara A., Matuszyk E., Szczesniak P., Mlynarski J., Baranska M.. Changes in the Mitochondrial Membrane Potential in Endothelial Cells Can Be Detected by Raman Microscopy. Spectrochim. Acta, Part A. 2023;286:121978. doi: 10.1016/j.saa.2022.121978. PubMed DOI
Love D. T., Guo C., Nikelshparg E. I., Brazhe N. A., Sosnovtseva O., Hawkins C. L.. The Role of the Myeloperoxidase-Derived Oxidant Hypothiocyanous Acid (HOSCN) in the Induction of Mitochondrial Dysfunction in Macrophages. Redox Biol. 2020;36:101602. doi: 10.1016/j.redox.2020.101602. PubMed DOI PMC
Muraleedharan A., Ray S. K.. Epigallocatechin-3-Gallate and Genistein for Decreasing Gut Dysbiosis, Inhibiting Inflammasomes, and Aiding Autophagy in Alzheimer’s Disease. Brain Sci. 2024;14(1):96. doi: 10.3390/brainsci14010096. PubMed DOI PMC
Chemerovski-Glikman M., Mimouni M., Dagan Y., Haj E., Vainer I., Allon R., Blumenthal E. Z., Adler-Abramovich L., Segal D., Gazit E., Zayit-Soudry S.. Rosmarinic Acid Restores Complete Transparency of Sonicated Human Cataract Ex Vivo and Delays Cataract Formation In Vivo. Sci. Rep. 2018;8(1):9341. doi: 10.1038/s41598-018-27516-9. PubMed DOI PMC
Frenkel-Pinter M., Tal S., Scherzer-Attali R., Abu-Hussien M., Alyagor I., Eisenbaum T., Gazit E., Segal D.. Cl-NQTrp Alleviates Tauopathy Symptoms in a Model Organism through the Inhibition of Tau Aggregation-Engendered Toxicity. Neurodegener. Dis. 2017;17(2–3):73–82. doi: 10.1159/000448518. PubMed DOI
KrishnaKumar V. G., Paul A., Gazit E., Segal D.. Mechanistic Insights into Remodeled Tau-Derived PHF6 Peptide Fibrils by Naphthoquinone-Tryptophan Hybrids. Sci. Rep. 2018;8(1):1–12. doi: 10.1038/s41598-017-18443-2. PubMed DOI PMC
Frenkel-Pinter M., Tal S., Scherzer-Attali R., Abu-Hussien M., Alyagor I., Eisenbaum T., Gazit E., Segal D.. Naphthoquinone-Tryptophan Hybrid Inhibits Aggregation of the Tau-Derived Peptide PHF6 and Reduces Neurotoxicity. J. Alzheimer’s Dis. 2016;51(1):165–178. doi: 10.3233/JAD-150927. PubMed DOI
Hill C. H., Viuff A. H., Spratley S. J., Salamone S., Christensen S. H., Read R. J., Moriarty N. W., Jensen H. H., Deane J. E.. Azasugar Inhibitors as Pharmacological Chaperones for Krabbe Disease. Chem. Sci. 2015;6(5):3075–3086. doi: 10.1039/C5SC00754B. PubMed DOI PMC
Scheres S. H. W., Ryskeldi-Falcon B., Goedert M.. Molecular Pathology of Neurodegenerative Diseases by Cryo-EM of Amyloids. Nature. 2023;621:701–710. doi: 10.1038/s41586-023-06437-2. PubMed DOI
Ke P. C., Zhou R., Serpell L. C., Riek R., Knowles T. P. J., Lashuel H. A., Gazit E., Hamley I. W., Davis T. P., Fändrich M., Otzen D. E., Chapman M. R., Dobson C. M., Eisenberg D. S., Mezzenga R.. Half a Century of Amyloids: Past, Present and Future. Chem. Soc. Rev. 2020;49(15):5473–5509. doi: 10.1039/C9CS00199A. PubMed DOI PMC
Shaham-Niv S., Adler-Abramovich L., Schnaider L., Gazit E.. Extension of the Generic Amyloid Hypothesis to Nonproteinaceous Metabolite Assemblies. Sci. Adv. 2015;1(7):e1500137. doi: 10.1126/sciadv.1500137. PubMed DOI PMC
Evans L. M. P., Gawron J., Sim F. J., Feltri M. L., Marziali L. N.. Human IPSC-Derived Myelinating Organoids and Globoid Cells to Study Krabbe Disease. PLoS One. 2024;19(12):e0314858. doi: 10.1371/journal.pone.0314858. PubMed DOI PMC
Castelvetri L. C., Givogri M. I., Zhu H., Smith B., Lopez-Rosas A., Qiu X., Van Breemen R., Bongarzone E. R.. Axonopathy Is a Compounding Factor in the Pathogenesis of Krabbe Disease. Acta Neuropathol. 2011;122(1):35. doi: 10.1007/s00401-011-0814-2. PubMed DOI PMC
Cleland W. W., Kennedy E. P.. The Enzymatic Synthesis of Psychosine. J. Biol. Chem. 1960;235(1):45–51. doi: 10.1016/S0021-9258(18)69582-1. PubMed DOI
Lin Y. N., Radin N. S.. Alternate Pathways of Cerebroside Catabolism. Lipids. 1973;8(12):732–736. doi: 10.1007/BF02531841. PubMed DOI
Coant N., Sakamoto W., Mao C., Hannun Y. A.. CeramidasesCeramidases, roles in sphingolipid metabolism and in health and disease Roles in Sphingolipid Metabolism and in Health and Disease. Adv. Biol. Regul. 2017;63:122–131. doi: 10.1016/J.JBIOR.2016.10.002. PubMed DOI PMC
Giri S., Khan M., Nath N., Singh I., Singh A. K.. The Role of AMPK in Psychosine Mediated Effects on Oligodendrocytes and Astrocytes: Implication for Krabbe Disease. J. Neurochem. 2008;105(5):1820. doi: 10.1111/j.1471-4159.2008.05279.x. PubMed DOI PMC
Yunis E. J., Lee R. E.. Tubules of Globoid Leukodystrophy: A Right-Handed Helix. Science. 1970;169(3940):64–66. doi: 10.1126/SCIENCE.169.3940.64. PubMed DOI
Adler-Abramovich L., Vaks L., Carny O., Trudler D., Magno A., Caflisch A., Frenkel D., Gazit E.. Phenylalanine Assembly into Toxic Fibrils Suggests Amyloid Etiology in Phenylketonuria. Nat. Chem. Biol. 2012;8(8):701–706. doi: 10.1038/nchembio.1002. PubMed DOI
Sade Yazdi D., Laor Bar-Yosef D., Adsi H., Kreiser T., Sigal S., Bera S., Zaguri D., Shaham-Niv S., Oluwatoba D. S., Levy D., Gartner M., Do T. D., Frenkel D., Gazit E.. Homocysteine Fibrillar Assemblies Display Cross-Talk with Alzheimer’s Disease β-Amyloid Polypeptide. Proc. Natl. Acad. Sci. U.S.A. 2021;118(24):e2017575118. doi: 10.1073/pnas.2017575118. PubMed DOI PMC
Gour N., Gazit E.. Metabolite Assemblies: A Surprising Extension to the Amyloid Hypothesis. Curr. Opin. Chem. Biol. 2021;64:154–164. doi: 10.1016/j.cbpa.2021.07.005. PubMed DOI
Kreiser T., Sogolovsky-Bard I., Zaguri D., Shaham-Niv S., Laor Bar-Yosef D., Gazit E.. Branched-Chain Amino Acid Assembly into Amyloid-like Fibrils Provides a New Paradigm for Maple Syrup Urine Disease Pathology. Int. J. Mol. Sci. 2023;24(21):15999. doi: 10.3390/ijms242115999. PubMed DOI PMC
Reiter C. R., Rebiai R., Kwak A., Marshall J., Wozniak D., Scesa G., Nguyen D., Rue E., Pathmasiri C., Pijewski R., van Breemen R., Cologna S., Crocker S. J., Givogri M. I., Bongarzone E. R.. The Pathogenic Sphingolipid Psychosine Is Secreted in Extracellular Vesicles in the Brain of a Mouse Model of Krabbe Disease. ASN Neuro. 2022;14:17590914221087816. doi: 10.1177/17590914221087817. PubMed DOI PMC
Eisenberg D., Jucker M.. The Amyloid State of Proteins in Human Diseases. Cell. 2012;148(6):1188–1203. doi: 10.1016/j.cell.2012.02.022. PubMed DOI PMC
Brahmachari S., Paul A., Segal D., Gazit E.. Inhibition of Amyloid Oligomerization into Different Supramolecular Architectures by Small Molecules: Mechanistic Insights and Design Rules. Future Med. Chem. 2017;9(8):797–810. doi: 10.4155/fmc-2017-0026. PubMed DOI
Pilátová J., Pánek T., Oborník M., Čepička I., Mojzeš P.. Revisiting Biocrystallization: Purine Crystalline Inclusions Are Widespread in Eukaryotes. ISME J. 2022;16(9):2290–2294. doi: 10.1038/s41396-022-01264-1. PubMed DOI PMC
Li Y., Beck R., Huang T., Choi M. C., Divinagracia M.. Scatterless Hybrid Metal–Single-Crystal Slit for Small-Angle X-Ray Scattering and High-Resolution X-Ray Diffraction. J. Appl. Crystallogr. 2008;41(6):1134–1139. doi: 10.1107/S0021889808031129. DOI