ABCF protein-mediated resistance shapes bacterial responses to antibiotics based on their type and concentration
Language English Country United States Media print-electronic
Document type Journal Article
Grant support
CZ.02.01.01/00/22_008/0004597,LX22NPO5103
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.01.01/00/22_010/0006118
Ministerstvo Školství, Mládeže a Tělovýchovy
134324
Grantová Agentura, Univerzita Karlova
1767418
Grantová Agentura, Univerzita Karlova
PubMed
40793774
PubMed Central
PMC12421871
DOI
10.1128/mbio.01568-25
Knihovny.cz E-resources
- Keywords
- ABCF proteins, Streptomyces, antibiotic resistance, stress adaptation, stress response, translational control,
- MeSH
- Anti-Bacterial Agents * pharmacology MeSH
- Drug Resistance, Bacterial * MeSH
- Bacterial Proteins * genetics metabolism MeSH
- Diterpenes pharmacology MeSH
- Lincosamides pharmacology MeSH
- Microbial Sensitivity Tests MeSH
- Pleuromutilins MeSH
- Polycyclic Compounds pharmacology MeSH
- Protein Biosynthesis MeSH
- Gene Expression Regulation, Bacterial drug effects MeSH
- Streptomyces coelicolor * drug effects genetics metabolism MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Anti-Bacterial Agents * MeSH
- Bacterial Proteins * MeSH
- Diterpenes MeSH
- Lincosamides MeSH
- Pleuromutilins MeSH
- Polycyclic Compounds MeSH
UNLABELLED: ABCF-ATPases are increasingly recognized as translation factors that rescue stalled ribosomes when they encounter difficult mRNA templates or are stalled by antibiotics. The latter defines antibiotic resistance ABCF (ARE ABCF) proteins, known for their role in antibiotic resistance. However, in this study, we reveal a broader role of ARE ABCFs in antibiotic-responsive regulation. Using genetic, OMICs, and biochemical approaches, we showed that ARE ABCF proteins TiaA and Are5sc in Streptomyces coelicolor use their resistance functions to modulate specialized metabolism and proteosynthesis in response to lincosamide, streptogramin A, and pleuromutilin (LSAP) antibiotics. Although under LSAP exposure, either Are5sc or TiaA is essential for activating the biosynthesis of the redox-active antimicrobial actinorhodin, these proteins exhibit distinct functions at the proteome level, defined by their resistance profiles and temporally regulated expression. Are5sc facilitates early adaptive responses by modulating the WblC regulon across a broad range of LSAP concentrations, while TiaA is induced later, specifically at higher concentrations, where it suppresses antibiotic stress responses, particularly against pleuromutilins. TiaA function thus reflects the ecological context of LSAP antibiotics as pleuromutilins are produced by fungi, whereas lincosamides/streptogramins originate from actinomycetes. Our findings demonstrate that ARE ABCF proteins, through their resistance function, act as global regulators of translation, mirroring the roles of non-ARE ABCF proteins like EttA. This highlights their broader ecological and physiological significance, extending beyond their established role in antibiotic resistance. IMPORTANCE: Bacteria adapt to diverse stimuli mainly through transcriptional changes that regulate adaptive protein factors. Here, we show that responses to protein synthesis-inhibiting antibiotics are fine-tuned by antibiotic resistance ABCF proteins at the translational level, enabling bacteria to differentiate between antibiotic classes and concentrations for a tailored response. Additionally, we have demonstrated that these proteins can specialize in conferring high-level resistance to specific antibiotics. Given their prevalence in pathogenic bacteria, antibiotic resistance ABCF (ARE ABCF) proteins may play a crucial role in resistance development, particularly against new antibiotics targeting the ribosomal catalytic center, presenting a significant challenge for antimicrobial therapy.
Department of Genetics and Microbiology Faculty of Science Charles University Prague Czech Republic
Institute of Microbiology of the CAS Prague Czech Republic
Institute of Microbiology of the CAS; BIOCEV Vestec Czech Republic
See more in PubMed
Fostier CR, Monlezun L, Ousalem F, Singh S, Hunt JF, Boël G. 2021. ABC-F translation factors: from antibiotic resistance to immune response. FEBS Lett 595:675–706. doi: 10.1002/1873-3468.13984 PubMed DOI PMC
Boël G, Smith PC, Ning W, Englander MT, Chen B, Hashem Y, Testa AJ, Fischer JJ, Wieden H-J, Frank J, Gonzalez RL, Hunt JF. 2014. The ABC-F protein EttA gates ribosome entry into the translation elongation cycle. Nat Struct Mol Biol 21:143–151. doi: 10.1038/nsmb.2740 PubMed DOI PMC
Chen B, Boël G, Hashem Y, Ning W, Fei J, Wang C, Gonzalez RL, Hunt JF, Frank J. 2014. EttA regulates translation by binding the ribosomal E site and restricting ribosome-tRNA dynamics. Nat Struct Mol Biol 21:152–159. doi: 10.1038/nsmb.2741 PubMed DOI PMC
Ousalem F, Ngo S, Oïffer T, Omairi-Nasser A, Hamon M, Monlezun L, Boël G. 2024. Global regulation via modulation of ribosome pausing by the ABC-F protein EttA. Nat Commun 15:6314. doi: 10.1038/s41467-024-50627-z PubMed DOI PMC
Fostier CR, Ousalem F, Leroy EC, Ngo S, Soufari H, Innis CA, Hashem Y, Boël G. 2023. Regulation of the macrolide resistance ABC-F translation factor MsrD. Nat Commun 14:3891. doi: 10.1038/s41467-023-39553-8 PubMed DOI PMC
Crowe-McAuliffe C, Murina V, Turnbull KJ, Kasari M, Mohamad M, Polte C, Takada H, Vaitkevicius K, Johansson J, Ignatova Z, Atkinson GC, O’Neill AJ, Hauryliuk V, Wilson DN. 2021. Structural basis of ABCF-mediated resistance to pleuromutilin, lincosamide, and streptogramin A antibiotics in Gram-positive pathogens. Nat Commun 12:3577. doi: 10.1038/s41467-021-23753-1 PubMed DOI PMC
Sharkey LKR, Edwards TA, O’Neill AJ. 2016. ABC-F proteins mediate antibiotic resistance through ribosomal protection. mBio 7:e01975-15. doi: 10.1128/mBio.01975-15 PubMed DOI PMC
Murina V, Kasari M, Hauryliuk V, Atkinson GC. 2018. Antibiotic resistance ABCF proteins reset the peptidyl transferase centre of the ribosome to counter translational arrest. Nucleic Acids Res 46:3753–3763. doi: 10.1093/nar/gky050 PubMed DOI PMC
Mohamad M, Nicholson D, Saha CK, Hauryliuk V, Edwards TA, Atkinson GC, Ranson NA, O’Neill AJ. 2022. Sal-type ABC-F proteins: intrinsic and common mediators of pleuromutilin resistance by target protection in staphylococci. Nucleic Acids Res 50:2128–2142. doi: 10.1093/nar/gkac058 PubMed DOI PMC
Obana N, Takada H, Crowe-McAuliffe C, Iwamoto M, Egorov AA, Wu KJY, Chiba S, Murina V, Paternoga H, Tresco BIC, Nomura N, Myers AG, Atkinson GC, Wilson DN, Hauryliuk V. 2023. Genome-encoded ABCF factors implicated in intrinsic antibiotic resistance in Gram-positive bacteria: VmlR2, Ard1 and CplR. Nucleic Acids Res 51:4536–4554. doi: 10.1093/nar/gkad193 PubMed DOI PMC
Koberska M, Vesela L, Vimberg V, Lenart J, Vesela J, Kamenik Z, Janata J, Balikova Novotna G. 2021. Beyond self-resistance: ABCF ATPase LmrC is a signal-transducing component of an antibiotic-driven signaling cascade accelerating the onset of lincomycin biosynthesis. mBio 12:e01731-21. doi: 10.1128/mBio.01731-21 PubMed DOI PMC
Vimberg V, Cavanagh JP, Novotna M, Lenart J, Nguyen Thi Ngoc B, Vesela J, Pain M, Koberska M, Balikova Novotna G, Ngoc BNT, Vesela J, Pain M, Koberska M, Novotna GB. 2020. Ribosome-mediated attenuation of vga(A) expression is shaped by the antibiotic resistance specificity of Vga(A) protein variants. Antimicrob Agents Chemother 64:e00666-20. doi: 10.1128/AAC.00666-20 PubMed DOI PMC
Crowe-McAuliffe C, Graf M, Huter P, Takada H, Abdelshahid M, Nováček J, Murina V, Atkinson GC, Hauryliuk V, Wilson DN. 2018. Structural basis for antibiotic resistance mediated by the Bacillus subtilis ABCF ATPase VmlR. Proc Natl Acad Sci USA 115:8978–8983. doi: 10.1073/pnas.1808535115 PubMed DOI PMC
Crowe-McAuliffe C, Wilson DN. 2022. Putting the antibiotics chloramphenicol and linezolid into context. Nat Struct Mol Biol 29:79–81. doi: 10.1038/s41594-022-00725-7 PubMed DOI
Zdouc MM, Blin K, Louwen NLL, Navarro J, Loureiro C, Bader CD, Bailey CB, Barra L, Booth TJ, Bozhüyük KAJ, et al. 2025. MIBiG 4.0: advancing biosynthetic gene cluster curation through global collaboration. Nucleic Acids Res 53:D678–D690. doi: 10.1093/nar/gkae1115 PubMed DOI PMC
Lee J-H, Yoo J-S, Kim Y, Kim J-S, Lee E-J, Roe J-H. 2020. The WblC/WhiB7 transcription factor controls intrinsic resistance to translation-targeting antibiotics by altering ribosome composition. mBio 11:e00625-20. doi: 10.1128/mBio.00625-20 PubMed DOI PMC
Mak S, Nodwell JR. 2017. Actinorhodin is a redox-active antibiotic with a complex mode of action against Gram-positive cells. Mol Microbiol 106:597–613. doi: 10.1111/mmi.13837 PubMed DOI
Ishizuka M, Imai Y, Mukai K, Shimono K, Hamauzu R, Ochi K, Hosaka T. 2018. A possible mechanism for lincomycin induction of secondary metabolism in Streptomyces coelicolor A3(2). Antonie Van Leeuwenhoek 111:705–716. doi: 10.1007/s10482-018-1021-0 PubMed DOI
Mukai K, Shibayama T, Imai Y, Hosaka T. 2023. Phenomenological interpretations of the mechanism for the concentration-dependent positive effect of antibiotic lincomycin on Streptomyces coelicolor A3(2). Appl Environ Microbiol 89:e01133-23. doi: 10.1128/aem.01133-23 PubMed DOI PMC
Imai Y, Sato S, Tanaka Y, Ochi K, Hosaka T. 2015. Lincomycin at subinhibitory concentrations potentiates secondary metabolite production by Streptomyces spp. Appl Environ Microbiol 81:3869–3879. doi: 10.1128/AEM.04214-14 PubMed DOI PMC
Hobbs G, Frazer C, Gardner D, Cullum J, Oliver S. 1989. Dispersed growth of Streptomyces in liquid culture. Appl Microbiol Biotechnol 31. doi: 10.1007/BF00258408 DOI
Takada H, Mandell ZF, Yakhnin H, Glazyrina A, Chiba S, Kurata T, Wu KJY, Tresco BIC, Myers AG, Aktinson GC, Babitzke P, Hauryliuk V. 2022. Expression of Bacillus subtilis ABCF antibiotic resistance factor VmlR is regulated by RNA polymerase pausing, transcription attenuation, translation attenuation and (p)ppGpp. Nucleic Acids Res 50:6174–6189. doi: 10.1093/nar/gkac497 PubMed DOI PMC
Dar D, Shamir M, Mellin JR, Koutero M, Stern-Ginossar N, Cossart P, Sorek R. 2016. Term-seq reveals abundant ribo-regulation of antibiotics resistance in bacteria. Science 352:aad9822. doi: 10.1126/science.aad9822 PubMed DOI PMC
Romero DA, Hasan AH, Lin Y-F, Kime L, Ruiz-Larrabeiti O, Urem M, Bucca G, Mamanova L, Laing EE, van Wezel GP, Smith CP, Kaberdin VR, McDowall KJ. 2014. A comparison of key aspects of gene regulation in Streptomyces coelicolor and Escherichia coli using nucleotide-resolution transcription maps produced in parallel by global and differential RNA sequencing. Mol Microbiol 94:963–987. doi: 10.1111/mmi.12810 PubMed DOI PMC
Jeong Y, Kim JN, Kim MW, Bucca G, Cho S, Yoon YJ, Kim BG, Roe JH, Kim SC, Smith CP, Cho BK. 2016. The dynamic transcriptional and translational landscape of the model antibiotic producer Streptomyces coelicolor A3(2). Nat Commun 7:11605. doi: 10.1038/ncomms11605 PubMed DOI PMC
Egorov AA, Atkinson GC. 2023. uORF4u: a tool for annotation of conserved upstream open reading frames. Bioinformatics 39:btad323. doi: 10.1093/bioinformatics/btad323 PubMed DOI PMC
Kim MS, Dufour YS, Yoo JS, Cho YB, Park JH, Nam GB, Kim HM, Lee KL, Donohue TJ, Roe JH. 2012. Conservation of thiol-oxidative stress responses regulated by SigR orthologues in actinomycetes. Mol Microbiol 85:326–344. doi: 10.1111/j.1365-2958.2012.08115.x PubMed DOI PMC
Yoo JS, Oh GS, Ryoo S, Roe JH. 2016. Induction of a stable sigma factor SigR by translation-inhibiting antibiotics confers resistance to antibiotics. Sci Rep 6:28628. doi: 10.1038/srep28628 PubMed DOI PMC
Li X, Wang J, Li S, Ji J, Wang W, Yang K. 2015. ScbR- and ScbR2-mediated signal transduction networks coordinate complex physiological responses in Streptomyces coelicolor. Sci Rep 5:14831. doi: 10.1038/srep14831 PubMed DOI PMC
Lim Y, Jung ES, Lee JH, Kim EJ, Hong SJ, Lee YH, Lee CH. 2018. Non-targeted metabolomics unravels a media-dependent prodiginines production pathway in Streptomyces coelicolor A3(2). PLoS One 13:e0207541. doi: 10.1371/journal.pone.0207541 PubMed DOI PMC
Lenart J, Vimberg V, Vesela L, Janata J, Balikova Novotna G. 2015. Detailed mutational analysis of Vga(A) interdomain linker: implication for antibiotic resistance specificity and mechanism. Antimicrob Agents Chemother 59:1360–1364. doi: 10.1128/AAC.04468-14 PubMed DOI PMC
Wan Y, Liu JJ, Mai Y, Hong Y, Jia Z, Tian G, Liu Y, Liang H, Liu JJ. 2024. Current advances and future trends of hormesis in disease. NPJ Aging 10:26. doi: 10.1038/s41514-024-00155-3 PubMed DOI PMC
Davies J, Spiegelman GB, Yim G. 2006. The world of subinhibitory antibiotic concentrations. Curr Opin Microbiol 9:445–453. doi: 10.1016/j.mib.2006.08.006 PubMed DOI
Spagnolo F, Trujillo M, Dennehy JJ. 2021. Why do antibiotics exist? mBio 12:e01966-21. doi: 10.1128/mBio.01966-21 PubMed DOI PMC
Zhang C, Liu L, Zhang P, Cui J, Qin X, Ma L, Han K, Wang Z, Wang S, Ding S, Shen Z. 2022. Characterization of a novel gene, srpA, conferring resistance to streptogramin a, pleuromutilins, and lincosamides in Streptococcus suis. Engineering (Beijing) 9:85–94. doi: 10.1016/j.eng.2020.12.015 DOI
Novotna G, Janata J. 2006. A new evolutionary variant of the streptogramin A resistance protein, Vga(A) PubMed DOI PMC
Zhanel GG, Deng C, Zelenitsky S, Lawrence CK, Adam HJ, Golden A, Berry L, Schweizer F, Zhanel MA, Irfan N, Bay D, Lagacé-Wiens P, Walkty A, Mandell L, Lynch JP, Karlowsky JA. 2021. Lefamulin: a novel oral and intravenous pleuromutilin for the treatment of community-acquired bacterial pneumonia. Drugs (Abingdon Engl) 81:233–256. doi: 10.1007/s40265-020-01443-4 PubMed DOI
Mitcheltree MJ, Pisipati A, Syroegin EA, Silvestre KJ, Klepacki D, Mason JD, Terwilliger DW, Testolin G, Pote AR, Wu KJY, Ladley RP, Chatman K, Mankin AS, Polikanov YS, Myers AG. 2021. A synthetic antibiotic class overcoming bacterial multidrug resistance. Nature 599:507–512. doi: 10.1038/s41586-021-04045-6 PubMed DOI PMC
Wu KJY, Tresco BIC, Ramkissoon A, Aleksandrova EV, Syroegin EA, See DNY, Liow P, Dittemore GA, Yu M, Testolin G, Mitcheltree MJ, Liu RY, Svetlov MS, Polikanov YS, Myers AG. 2024. An antibiotic preorganized for ribosomal binding overcomes antimicrobial resistance. Science 383:721–726. doi: 10.1126/science.adk8013 PubMed DOI PMC
Cocito C. 1979. Antibiotics of the virginiamycin family, inhibitors which contain synergistic components. Microbiol Rev 43:145–192. doi: 10.1128/mr.43.2.145-192.1979 PubMed DOI PMC
Koběrská M, Kopecký J, Olšovská J, Jelínková M, Ulanova D, Man P, Flieger M, Janata J. 2008. Sequence analysis and heterologous expression of the lincomycin biosynthetic cluster of the type strain Streptomyces lincolnensis ATCC 25466. Folia Microbiol 53:395–401. doi: 10.1007/s12223-008-0060-8 PubMed DOI
Westhoff S, Kloosterman AM, van Hoesel SFA, van Wezel GP, Rozen DE. 2021. Competition sensing changes antibiotic production in Streptomyces. mBio 12:e02729-20. doi: 10.1128/mBio.02729-20 PubMed DOI PMC
Bailey AM, Alberti F, Kilaru S, Collins CM, de Mattos-Shipley K, Hartley AJ, Hayes P, Griffin A, Lazarus CM, Cox RJ, Willis CL, O’Dwyer K, Spence DW, Foster GD. 2016. Identification and manipulation of the pleuromutilin gene cluster from Clitopilus passeckerianus for increased rapid antibiotic production. Sci Rep 6:25202. doi: 10.1038/srep25202 PubMed DOI PMC
Krespach MKC, Stroe MC, Netzker T, Rosin M, Zehner LM, Komor AJ, Beilmann JM, Krüger T, Scherlach K, Kniemeyer O, Schroeckh V, Hertweck C, Brakhage AA. 2023. Streptomyces polyketides mediate bacteria–fungi interactions across soil environments. Nat Microbiol 8:1348–1361. doi: 10.1038/s41564-023-01382-2 PubMed DOI PMC
Deveau A, Bonito G, Uehling J, Paoletti M, Becker M, Bindschedler S, Hacquard S, Hervé V, Labbé J, Lastovetsky OA, Mieszkin S, Millet LJ, Vajna B, Junier P, Bonfante P, Krom BP, Olsson S, van Elsas JD, Wick LY. 2018. Bacterial–fungal interactions: ecology, mechanisms and challenges. FEMS Microbiol Rev 42:335–352. doi: 10.1093/femsre/fuy008 PubMed DOI
Netzker T, Flak M, Krespach MK, Stroe MC, Weber J, Schroeckh V, Brakhage AA. 2018. Microbial interactions trigger the production of antibiotics. Curr Opin Microbiol 45:117–123. doi: 10.1016/j.mib.2018.04.002 PubMed DOI
Lee JH, Lee EJ, Roe JH. 2022. uORF-mediated riboregulation controls transcription of whiB7/wblC antibiotic resistance gene. Mol Microbiol 117:179–192. doi: 10.1111/mmi.14834 PubMed DOI
Bentley SD, Chater KF, Cerdeño-Tárraga A-M, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, et al. 2002. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147. doi: 10.1038/417141a PubMed DOI
Toh M, Chengan K, Hanson T, Freemont PS, Moore SJ. 2021. A high-yield Streptomyces transcription-translation toolkit for synthetic biology and natural product applications. J Vis Exp. doi: 10.3791/63012 PubMed DOI PMC
Gust B, Chandra G, Jakimowicz D, Yuqing T, Bruton CJ, Chater KF. 2004. λ Red-mediated genetic manipulation of antibiotic-producing Streptomyces. Adv Appl Microbiol 2004:107–128. doi: 10.1016/S0065-2164(04)54004-2 PubMed DOI
Tong Y, Charusanti P, Zhang L, Weber T, Lee SY. 2015. CRISPR-Cas9 based engineering of actinomycetal genomes. ACS Synth Biol 4:1020–1029. doi: 10.1021/acssynbio.5b00038 PubMed DOI
Blin K, Pedersen LE, Weber T, Lee SY. 2016. CRISPy-web: an online resource to design sgRNAs for CRISPR applications. Synth Syst Biotechnol 1:118–121. doi: 10.1016/j.synbio.2016.01.003 PubMed DOI PMC
Hong H-J, Hutchings MI, Hill LM, Buttner MJ. 2005. The role of the novel fem protein VanK in vancomycin resistance in Streptomyces coelicolor. J Biol Chem 280:13055–13061. doi: 10.1074/jbc.M413801200 PubMed DOI
Gregory MA, Till R, Smith MCM. 2003. Integration site for Streptomyces phage φBT1 and development of site-specific integrating vectors. J Bacteriol 185:5320–5323. doi: 10.1128/JB.185.17.5320-5323.2003 PubMed DOI PMC
Horbal L, Siegl T, Luzhetskyy A. 2018. A set of synthetic versatile genetic control elements for the efficient expression of genes in Actinobacteria. Sci Rep 8:491. doi: 10.1038/s41598-017-18846-1 PubMed DOI PMC
Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA. 2000. Practical Streptomyces genetics. John Innes Centre Ltd.
Sherwood EJ, Bibb MJ. 2013. The antibiotic planosporicin coordinates its own production in the actinomycete Planomonospora alba. Proc Natl Acad Sci USA 110:E2500–E2509. doi: 10.1073/pnas.1305392110 PubMed DOI PMC
Hughes CS, Moggridge S, Müller T, Sorensen PH, Morin GB, Krijgsveld J. 2019. Single-pot, solid-phase-enhanced sample preparation for proteomics experiments. Nat Protoc 14:68–85. doi: 10.1038/s41596-018-0082-x PubMed DOI
Rappsilber J, Mann M, Ishihama Y. 2007. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2:1896–1906. doi: 10.1038/nprot.2007.261 PubMed DOI
Hebert AS, Richards AL, Bailey DJ, Ulbrich A, Coughlin EE, Westphall MS, Coon JJ. 2014. The one hour yeast proteome. Mol Cell Proteomics 13:339–347. doi: 10.1074/mcp.M113.034769 PubMed DOI PMC
Cox J, Mann M. 2008. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372. doi: 10.1038/nbt.1511 PubMed DOI
Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M. 2014. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics 13:2513–2526. doi: 10.1074/mcp.M113.031591 PubMed DOI PMC
Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, Mann M, Cox J. 2016. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 13:731–740. doi: 10.1038/nmeth.3901 PubMed DOI
Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. 2016. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 44:D457–D462. doi: 10.1093/nar/gkv1070 PubMed DOI PMC
Chambers MC, Maclean B, Burke R, Amodei D, Ruderman DL, Neumann S, Gatto L, Fischer B, Pratt B, Egertson J, et al. 2012. A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol 30:918–920. doi: 10.1038/nbt.2377 PubMed DOI PMC
Traxler MF, Watrous JD, Alexandrov T, Dorrestein PC, Kolter R. 2013. Interspecies interactions stimulate diversification of the Streptomyces coelicolor secreted metabolome. mBio 4:e00459-13. doi: 10.1128/mBio.00459-13 PubMed DOI PMC
Čihák M, Kameník Z, Šmídová K, Bergman N, Benada O, Kofroňová O, Petříčková K, Bobek J. 2017. Secondary metabolites produced during the germination of Streptomyces coelicolor Front Microbiol 8:2495. doi: 10.3389/fmicb.2017.02495 PubMed DOI PMC
Neary JM, Powell A, Gordon L, Milne C, Flett F, Wilkinson B, Smith CP, Micklefield J. 2007. An asparagine oxygenase (AsnO) and a 3-hydroxyasparaginyl phosphotransferase (HasP) are involved in the biosynthesis of calcium-dependent lipopeptide antibiotics. Microbiology (Reading) 153:768–776. doi: 10.1099/mic.0.2006/002725-0 PubMed DOI
Orelle C, Carlson S, Kaushal B, Almutairi MM, Liu H, Ochabowicz A, Quan S, Pham VC, Squires CL, Murphy BT, Mankin AS. 2013. Tools for characterizing bacterial protein synthesis inhibitors. Antimicrob Agents Chemother 57:5994–6004. doi: 10.1128/AAC.01673-13 PubMed DOI PMC
Vazquez-Laslop N, Thum C, Mankin AS. 2008. Molecular mechanism of drug-dependent ribosome stalling. Mol Cell 30:190–202. doi: 10.1016/j.molcel.2008.02.026 PubMed DOI
Katoh K, Misawa K, Kuma K, Miyata T. 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066. doi: 10.1093/nar/gkf436 PubMed DOI PMC
Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. 2009. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25:1972–1973. doi: 10.1093/bioinformatics/btp348 PubMed DOI PMC
Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A. 2019. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35:4453–4455. doi: 10.1093/bioinformatics/btz305 PubMed DOI PMC
Darriba D, Posada D, Kozlov AM, Stamatakis A, Morel B, Flouri T. 2020. ModelTest-NG: a new and scalable tool for the selection of DNA and protein evolutionary models. Mol Biol Evol 37:291–294. doi: 10.1093/molbev/msz189 PubMed DOI PMC
Letunic I, Bork P. 2024. Interactive Tree of Life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Res 52:W78–W82. doi: 10.1093/nar/gkae268 PubMed DOI PMC
Perez-Riverol Y, Bandla C, Kundu DJ, Kamatchinathan S, Bai J, Hewapathirana S, John NS, Prakash A, Walzer M, Wang S, Vizcaíno JA. 2025. The PRIDE database at 20 years: 2025 update. Nucleic Acids Res 53:D543–D553. doi: 10.1093/nar/gkae1011 PubMed DOI PMC