Enhanced Response of ZnO Nanorod-Based Flexible MEAs for Recording Ischemia-Induced Neural Activity in Acute Brain Slices
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
956325
European Commission
101130650
European Commission
23-06269S
Czech Science Foundation
LM2023050
Ministry of Education Youth and Sports
LX22NPO5107
Ministry of Education, Youth and Sports (Financed by EU-Next Generation EU)
VP29
Czech Academy of Sciences (Strategy AV21)
PubMed
40801712
PubMed Central
PMC12348239
DOI
10.3390/nano15151173
PII: nano15151173
Knihovny.cz E-resources
- Keywords
- acute brain slices, cerebral ischemia, micro/nano electrode array, spreading depolarization, zinc oxide nanorods,
- Publication type
- Journal Article MeSH
Brain ischemia is a severe condition caused by reduced cerebral blood flow, leading to the disruption of ion gradients in brain tissue. This imbalance triggers spreading depolarizations, which are waves of neuronal and glial depolarization propagating through the gray matter. Microelectrode arrays (MEAs) are essential for real-time monitoring of these electrophysiological processes both in vivo and in vitro, but their sensitivity and signal quality are critical for accurate detection of extracellular brain activity. In this study, we evaluate the performance of a flexible microelectrode array based on gold-coated zinc oxide nanorods (ZnO NRs), referred to as nano-fMEA, specifically for high-fidelity electrophysiological recording under pathological conditions. Acute mouse brain slices were tested under two ischemic models: oxygen-glucose deprivation (OGD) and hyperkalemia. The nano-fMEA demonstrated significant improvements in event detection rates and in capturing subtle fluctuations in neural signals compared to flat fMEAs. This enhanced performance is primarily attributed to an optimized electrode-tissue interface that reduces impedance and improves charge transfer. These features enabled the nano-fMEA to detect weak or transient electrophysiological events more effectively, making it a valuable platform for investigating neural dynamics during metabolic stress. Overall, the results underscore the promise of ZnO NRs in advancing electrophysiological tools for neuroscience research.
2nd Faculty of Medicine Charles University 84 5 Uvalu 150 06 Prague Czech Republic
Alma Mater Studiorum Department of Engineering Università di Bologna 40126 Bologna Italy
Consiglio Nazionale Delle Ricerche Istituto per la Microelettronica e Microsistemi 00133 Rome Italy
See more in PubMed
Serra J., Mateus J.C., Cardoso S., Ventura J., Aguiar P., Leitao D.C. Stress-actuated Flexible Microelectrode Arrays for Activity Recording in 3D Neuronal Cultures. bioRxiv. 2024 doi: 10.1101/2024.12.12.628189. DOI
Tang X., Shen H., Zhao S., Li N., Liu J. Flexible brain–computer interfaces. Nat. Electron. 2023;6:109–118. doi: 10.1038/s41928-022-00913-9. DOI
Someya T., Bao Z., Malliaras G.G. The rise of plastic bioelectronics. Nature. 2016;540:379–385. doi: 10.1038/nature21004. PubMed DOI
Minev I.R., Musienko P., Hirsch A., Barraud Q., Wenger N., Moraud E.M., Gandar J., Capogrosso M., Milekovic T., Asboth L., et al. Electronic dura mater for long-term multimodal neural interfaces. Science. 2015;347:159–163. doi: 10.1126/science.1260318. PubMed DOI
Lacour S.P., Courtine G., Guck J. Materials and technologies for soft implantable neuroprostheses. Nat. Rev. Mater. 2016;1:16063. doi: 10.1038/natrevmats.2016.63. DOI
Zhou H., Jin Z., Xu Y., Lu Y., Xia Z., Yang F., Wu Q., Gao Y., Yin J., Zhang J., et al. Enhanced laser-induced PEDOT-based hydrogels for highly conductive bioelectronics. Natl. Sci. Rev. 2025;12:nwaf136. doi: 10.1093/nsr/nwaf136. PubMed DOI PMC
Xu K., Ko S.H., Chen J. Advances in wearable and implantable bioelectronics for precision medicine. Bio-Design Manuf. 2024;7:383–387. doi: 10.1007/s42242-024-00302-5. DOI
Xu K., Cai Z., Luo H., Lu Y., Ding C., Yang G., Wang L., Kuang C., Liu J., Yang H. Toward Integrated Multifunctional Laser-Induced Graphene-Based Skin-Like Flexible Sensor Systems. ACS Nano. 2024;18:26435–26476. doi: 10.1021/acsnano.4c09062. PubMed DOI
Rivnay J., Wang H., Fenno L., Deisseroth K., Malliaras G.G. Next-generation probes, particles, and proteins for neural interfacing. Sci. Adv. 2017;3:e1601649. doi: 10.1126/sciadv.1601649. PubMed DOI PMC
Song X., Gu Y., Wang S., Wang J., Yu L. Nanowire-Based Flexible Sensors for Wearable Electronics, Brain–Computer Interfaces, and Artificial Skins. Electron. 2025;3:e77. doi: 10.1002/elt2.77. DOI
Simon D.T., Gabrielsson E.O., Tybrandt K., Berggren M. Organic Bioelectronics: Bridging the Signaling Gap between Biology and Technology. Chem. Rev. 2016;116:13009–13041. doi: 10.1021/acs.chemrev.6b00146. PubMed DOI
Raos B., Maddah M., Graham E., Plank N., Unsworth C. ZnO nanowire florets promote the growth of human neurons. Materialia. 2020;9:100577. doi: 10.1016/j.mtla.2019.100577. DOI
Maddah M., Unsworth C.P., Plank N.O.V. Selective growth of ZnO nanowires with varied aspect ratios on an individual substrate. Mater. Res. Express. 2019;6:015905. doi: 10.1088/2053-1591/aae6a2. DOI
Maddah M., Unsworth C.P., Gouws G.J., Plank N.O.V. Synthesis of encapsulated ZnO nanowires provide low impedance alternatives for microelectrodes. PLoS ONE. 2022;17:e0270164. doi: 10.1371/journal.pone.0270164. PubMed DOI PMC
Babu K.S., Pinheiro P.F., Marques C.F., Justino G.C., Andrade S.M., Alves M.M. Flexible ZnO-mAb nanoplatforms for selective peripheral blood mononuclear cell immobilization. Sci. Rep. 2020;10:15018. doi: 10.1038/s41598-020-72133-0. PubMed DOI PMC
Giakoumaki A.N., Kenanakis G., Klini A., Androulidaki M., Viskadourakis Z., Farsari M., Selimis A. 3D micro-structured arrays of ZnO nanorods. Sci. Rep. 2017;7:2100. doi: 10.1038/s41598-017-02231-z. PubMed DOI PMC
Fan Z., Lu J.G. Zinc Oxide Nanostructures: Synthesis and Properties. J. Nanosci. Nanotechnol. 2005;5:1561–1573. doi: 10.1166/jnn.2005.182. PubMed DOI
Rinaldi A., Pea M., Notargiacomo A., Ferrone E., Garroni S., Pilloni L., Araneo R. A Simple Ball Milling and Thermal Oxidation Method for Synthesis of ZnO Nanowires Decorated with Cubic ZnO2 Nanoparticles. Nanomaterials. 2021;11:475. doi: 10.3390/nano11020475. PubMed DOI PMC
Carofiglio M., Barui S., Cauda V., Laurenti M. Doped Zinc Oxide Nanoparticles: Synthesis, Characterization and Potential Use in Nanomedicine. Appl. Sci. 2020;10:5194. doi: 10.3390/app10155194. PubMed DOI PMC
Schmidt V., Wittemann J.V., Senz S., Gösele U. Silicon Nanowires: A Review on Aspects of their Growth and their Electrical Properties. Adv. Mater. 2009;21:2681–2702. doi: 10.1002/adma.200803754. PubMed DOI
Hessien M. Recent progress in zinc oxide nanomaterials and nanocomposites: From synthesis to applications. Ceram. Int. 2022;48:22609–22628. doi: 10.1016/j.ceramint.2022.05.082. DOI
Maita F., Maiolo L., Lucarini I., Del Rio De Vicente I., Palmieri E., Fiorentini E., Mussi V. Low-Cost and Label-Free Raman Sensors Based on Ag-Coated ZnO Nanorods for Monitoring Astronaut’s Health; Proceedings of the 2023 IEEE 10th International Workshop on Metrology for Aerospace (MetroAeroSpace); Milan, Italy. 19–21 June 2023; pp. 363–367. DOI
Sudha D., Kumar E.R., Shanjitha S., Munshi A.M., Al-Hazmi G.A.A., El-Metwaly N.M., Kirubavathy S.J. Structural, optical, morphological and electrochemical properties of ZnO and graphene oxide blended ZnO nanocomposites. Ceram. Int. 2023;49:7284–7288. doi: 10.1016/j.ceramint.2022.10.192. DOI
Del Río De Vicente J.I., Lucarini I., Maita F., Salvò D., Marchetti V., Anderova M., Gómez J., Maiolo L. Development of ZnO NRs-rGO Low-Impedance Electrodes for Astrocyte Cell Signal Recording; Proceedings of the 2023 IEEE SENSORS; Vienna, Austria. 29 October–1 November 2023; pp. 1–4. DOI
Wang M., Mi G., Shi D., Bassous N., Hickey D., Webster T.J. Nanotechnology and Nanomaterials for Improving Neural Interfaces. Adv. Funct. Mater. 2018;28:1700905. doi: 10.1002/adfm.201700905. DOI
Rodilla B.L., Arché-Núñez A., Ruiz-Gómez S., Domínguez-Bajo A., Fernández-González C., Guillén-Colomer C., González-Mayorga A., Rodríguez-Díez N., Camarero J., Miranda R., et al. Flexible metallic core–shell nanostructured electrodes for neural interfacing. Sci. Rep. 2024;14:3729. doi: 10.1038/s41598-024-53719-4. PubMed DOI PMC
Saracino E., Maiolo L., Polese D., Semprini M., Borrachero-Conejo A.I., Gasparetto J., Murtagh S., Sola M., Tomasi L., Valle F., et al. A Glial-Silicon Nanowire Electrode Junction Enabling Differentiation and Noninvasive Recording of Slow Oscillations from Primary Astrocytes. Adv. Biosyst. 2020;4:1900264. doi: 10.1002/adbi.201900264. PubMed DOI
Kirdajova D.B., Kriska J., Tureckova J., Anderova M. Ischemia-Triggered Glutamate Excitotoxicity from the Perspective of Glial Cells. Front. Cell. Neurosci. 2020;14:51. doi: 10.3389/fncel.2020.00051. PubMed DOI PMC
Du Y., Wang W., Lutton A.D., Kiyoshi C.M., Ma B., Taylor A.T., Olesik J.W., McTigue D.M., Askwith C.C., Zhou M. Dissipation of transmembrane potassium gradient is the main cause of cerebral ischemia-induced depolarization in astrocytes and neurons. Exp. Neurol. 2018;303:1–11. doi: 10.1016/j.expneurol.2018.01.019. PubMed DOI PMC
Menyhárt Á., Zölei-Szénási D., Puskás T., Makra P., Tóth O.M., Szepes B., Tóth R., Ivánkovits-Kiss O., Obrenovitch T., Bari F., et al. Spreading depolarization remarkably exacerbates ischemia-induced tissue acidosis in the young and aged rat brain. Sci. Rep. 2017;7:1154. doi: 10.1038/s41598-017-01284-4. PubMed DOI PMC
Shen X.-Y., Gao Z.-K., Han Y., Yuan M., Guo Y.-S., Bi X. Activation and Role of Astrocytes in Ischemic Stroke. Front. Cell. Neurosci. 2021;15:755955. doi: 10.3389/fncel.2021.755955. PubMed DOI PMC
Eguchi K., Velicky P., Hollergschwandtner E., Itakura M., Fukazawa Y., Danzl J.G., Shigemoto R. Advantages of Acute Brain Slices Prepared at Physiological Temperature in the Characterization of Synaptic Functions. Front. Cell. Neurosci. 2020;14:63. doi: 10.3389/fncel.2020.00063. PubMed DOI PMC
Buskila Y., Breen P.P., Tapson J., van Schaik A., Barton M., Morley J.W. Extending the viability of acute brain slices. Sci. Rep. 2014;4:5309. doi: 10.1038/srep05309. PubMed DOI PMC
Maiolo L., Guarino V., Saracino E., Convertino A., Melucci M., Muccini M., Ambrosio L., Zamboni R., Benfenati V. Glial Interfaces: Advanced Materials and Devices to Uncover the Role of Astroglial Cells in Brain Function and Dysfunction. Adv. Healthc. Mater. 2021;10:e2001268. doi: 10.1002/adhm.202001268. PubMed DOI
Barbagiovanni E.G., Strano V., Franzò G., Crupi I., Mirabella S. Photoluminescence transient study of surface defects in ZnO nanorods grown by chemical bath deposition. Appl. Phys. Lett. 2015;106:093108. doi: 10.1063/1.4914067. DOI
Strano V., Urso R.G., Scuderi M., Iwu K.O., Simone F., Ciliberto E., Spinella C., Mirabella S. Double Role of HMTA in ZnO Nanorods Grown by Chemical Bath Deposition. J. Phys. Chem. C. 2014;118:28189–28195. doi: 10.1021/jp507496a. DOI
Yi G.-C., Wang C., Park W.I. ZnO nanorods: Synthesis, characterization and applications. Semicond. Sci. Technol. 2005;20:S22–S34. doi: 10.1088/0268-1242/20/4/003. DOI
Pazzini L., Polese D., Weinert J.F., Maiolo L., Maita F., Marrani M., Pecora A., Sanchez-Vives M.V., Fortunato G. An ultra-compact integrated system for brain activity recording and stimulation validated over cortical slow oscillations in vivo and in vitro. Sci. Rep. 2018;8:16717. doi: 10.1038/s41598-018-34560-y. PubMed DOI PMC
Nolte C., Matyash M., Pivneva T., Schipke C.G., Ohlemeyer C., Hanisch U.K., Kirchhoff F., Kettenmann H. GFAP promoter-controlled EGFP-expressing transgenic mice: A tool to visualize astrocytes and astrogliosis in living brain tissue. Glia. 2001;33:72–86. doi: 10.1002/1098-1136(20010101)33:1<72::AID-GLIA1007>3.0.CO;2-A. PubMed DOI
Kristian T., Hu B. Guidelines for using mouse global cerebral ischemia models. Transl. Stroke Res. 2013;4:343–350. doi: 10.1007/s12975-012-0236-z. PubMed DOI
Kriska J., Honsa P., Dzamba D., Butenko O., Kolenicova D., Janeckova L., Nahacka Z., Andera L., Kozmik Z., Taketo M.M., et al. Manipulating Wnt signaling at different subcellular levels affects the fate of neonatal neural stem/progenitor cells. Brain Res. 2016;1651:73–87. doi: 10.1016/j.brainres.2016.09.026. PubMed DOI
Corish P., Tyler-Smith C. Attenuation of green fluorescent protein half-life in mammalian cells. Protein Eng. 1999;12:1035–1040. doi: 10.1093/protein/12.12.1035. PubMed DOI
Janssen P.M., Biesiadecki B.J., Ziolo M.T., Davis J.P. The Need for Speed; Mice, Men, and Myocardial Kinetic Reserve. Circ. Res. 2016;119:418–421. doi: 10.1161/CIRCRESAHA.116.309126. PubMed DOI PMC
Lucarini I., Maita F., Conte G., Saracino E., Formaggio F., Palmieri E., Fabbri R., Konstantoulaki A., Lazzarini C., Caprini M., et al. Silicon Nanowire Mats Enable Advanced Bioelectrical Recordings in Primary DRG Cell Cultures. Adv. Healthc. Mater. 2025;14:e2500379. doi: 10.1002/adhm.202500379. PubMed DOI PMC
Vonk W.I.M., Rainbolt T.K., Dolan P.T., Webb A.E., Brunet A., Frydman J. Differentiation Drives Widespread Rewiring of the Neural Stem Cell Chaperone Network. Mol. Cell. 2020;78:329–345.e9. doi: 10.1016/j.molcel.2020.03.009. PubMed DOI PMC
Benincasa J.C., Madias M.I., Kandell R.M., Delgado-Garcia L.M., Engler A.J., Kwon E.J., Porcionatto M.A. Mechanobiological Modulation of In Vitro Astrocyte Reactivity Using Variable Gel Stiffness. ACS Biomater. Sci. Eng. 2024;10:4279–4296. doi: 10.1021/acsbiomaterials.4c00229. PubMed DOI PMC
Yamashita T., Ninomiya M., Acosta P.H., García-Verdugo J.M., Sunabori T., Sakaguchi M., Adachi K., Kojima T., Hirota Y., Kawase T., et al. Subventricular zone-derived neuroblasts migrate and differentiate into mature neurons in the post-stroke adult striatum. J. Neurosci. 2006;26:6627–6636. doi: 10.1523/JNEUROSCI.0149-06.2006. PubMed DOI PMC
Doetsch F., Caillé I., Lim D.A., García-Verdugo J.M., Alvarez-Buylla A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell. 1999;97:703–716. doi: 10.1016/S0092-8674(00)80783-7. PubMed DOI
Joshi I., Andrew R.D. Imaging anoxic depolarization during ischemia-like conditions in the mouse hemi-brain slice. J. Neurophysiol. 2001;85:414–424. doi: 10.1152/jn.2001.85.1.414. PubMed DOI
Taylor C.P., Weber M.L., Gaughan C.L., Lehning E.J., LoPachin R.M. Oxygen/glucose deprivation in hippocampal slices: Altered intraneuronal elemental composition predicts structural and functional damage. J. Neurosci. Off. J. Soc. Neurosci. 1999;19:619–629. doi: 10.1523/JNEUROSCI.19-02-00619.1999. PubMed DOI PMC
Reappraisal of Anoxic Spreading Depolarization as a Terminal Event During Oxygen–Glucose Deprivation in Brain Slices In Vitro Scientific Reports. [(accessed on 17 April 2025)]. Available online: https://www.nature.com/articles/s41598-020-75975-w. PubMed PMC
Antunes A.P., Schiefecker A.J., Beer R., Pfausler B., Sohm F., Fischer M., Dietmann A., Lackner P., Hackl W.O., Ndayisaba J.-P., et al. Higher brain extracellular potassium is associated with brain metabolic distress and poor outcome after aneurysmal subarachnoid hemorrhage. Crit. Care. 2014;18:R119. doi: 10.1186/cc13916. PubMed DOI PMC
Hansen A.J. The extracellular potassium concentration in brain cortex following ischemia in hypo- and hyperglycemic rats. Acta Physiol. Scand. 1978;102:324–329. doi: 10.1111/j.1748-1716.1978.tb06079.x. PubMed DOI
Somjen G.G. Extracellular potassium in the mammalian central nervous system. Annu. Rev. Physiol. 1979;41:159–177. doi: 10.1146/annurev.ph.41.030179.001111. PubMed DOI
Cho S., Wood A., Bowlby M.R. Brain slices as models for neurodegenerative disease and screening platforms to identify novel therapeutics. Curr. Neuropharmacol. 2007;5:19–33. doi: 10.2174/157015907780077105. PubMed DOI PMC
Humpel C. Organotypic brain slice cultures: A review. Neuroscience. 2015;305:86–98. doi: 10.1016/j.neuroscience.2015.07.086. PubMed DOI PMC
Blaeser A.S., Connors B.W., Nurmikko A.V. Spontaneous dynamics of neural networks in deep layers of prefrontal cortex. J. Neurophysiol. 2017;117:1581–1594. doi: 10.1152/jn.00295.2016. PubMed DOI PMC
Schmidt S.L., Chew E.Y., Bennett D.V., Hammad M.A., Fröhlich F. Differential effects of cholinergic and noradrenergic neuromodulation on spontaneous cortical network dynamics. Neuropharmacology. 2013;72:259–273. doi: 10.1016/j.neuropharm.2013.04.045. PubMed DOI
Ting J.T., Daigle T.L., Chen Q., Feng G. Acute brain slice methods for adult and aging animals: Application of targeted patch clamp analysis and optogenetics. Methods Mol. Biol. 2014;1183:221–242. doi: 10.1007/978-1-4939-1096-0_14. PubMed DOI PMC
Walch E., Murphy T.R., Cuvelier N., Aldoghmi M., Morozova C., Donohue J., Young G., Samant A., Garcia S., Alvarez C., et al. Astrocyte-Selective Volume Increase in Elevated Extracellular Potassium Conditions Is Mediated by the Na+/K+ ATPase and Occurs Independently of Aquaporin 4. ASN Neuro. 2020;12:1759091420967152. doi: 10.1177/1759091420967152. PubMed DOI PMC
Ding F., Sun Q., Long C., Rasmussen R.N., Peng S., Xu Q., Kang N., Song W., Weikop P., Goldman S.A., et al. Dysregulation of extracellular potassium distinguishes healthy ageing from neurodegeneration. Brain J. Neurol. 2024;147:1726–1739. doi: 10.1093/brain/awae075. PubMed DOI PMC
Xie M., Wang W., Kimelberg H.K., Zhou M. Oxygen and glucose deprivation-induced changes in astrocyte membrane potential and their underlying mechanisms in acute rat hippocampal slices. J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab. 2007;28:456–467. doi: 10.1038/sj.jcbfm.9600545. PubMed DOI
Buzsáki G., Anastassiou C.A., Koch C. The origin of extracellular fields and currents—EEG, ECoG, LFP and spikes. Nat. Rev. Neurosci. 2012;13:407–420. doi: 10.1038/nrn3241. PubMed DOI PMC
Henze D.A., Borhegyi Z., Csicsvari J., Mamiya A., Harris K.D., Buzsáki G. Intracellular features predicted by extracellular recordings in the hippocampus in vivo. J. Neurophysiol. 2000;84:390–400. doi: 10.1152/jn.2000.84.1.390. PubMed DOI
Mestre A.L.G., Inácio P.M.C., Elamine Y., Asgarifar S., Lourenço A.S., Cristiano M.L.S., Aguiar P., Medeiros M.C.R., Araújo I.M., Ventura J., et al. Extracellular Electrophysiological Measurements of Cooperative Signals in Astrocytes Populations. Front. Neural Circuits. 2017;11:80. doi: 10.3389/fncir.2017.00080. PubMed DOI PMC
Chiang C.-C., Durand D.M. Subthreshold Oscillating Waves in Neural Tissue Propagate by Volume Conduction and Generate Interference. Brain Sci. 2022;13:74. doi: 10.3390/brainsci13010074. PubMed DOI PMC