The codon context provides cis-acting immune evasion for the human papilloma virus (HPV) E6
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články
PubMed
40957654
PubMed Central
PMC12621584
DOI
10.1261/rna.080390.125
PII: rna.080390.125
Knihovny.cz E-zdroje
- Klíčová slova
- HPV E6, codon usage, immune evasion,
- MeSH
- imunitní únik * genetika MeSH
- infekce papilomavirem virologie imunologie genetika MeSH
- kodon * genetika MeSH
- lidé MeSH
- lidské papilomaviry MeSH
- lidský papilomavirus 16 * genetika imunologie MeSH
- messenger RNA genetika MeSH
- onkogenní proteiny virové * genetika imunologie metabolismus MeSH
- proteosyntéza MeSH
- regulace exprese virových genů MeSH
- represorové proteiny * genetika imunologie MeSH
- RNA transferová genetika MeSH
- Saccharomyces cerevisiae genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- E6 protein, Human papillomavirus type 16 MeSH Prohlížeč
- kodon * MeSH
- messenger RNA MeSH
- onkogenní proteiny virové * MeSH
- represorové proteiny * MeSH
- RNA transferová MeSH
Human papilloma viruses (HPV) are linked to cancers, but how virus-carrying tumor cells express HPV-encoded antigens without attracting the immune system is still poorly understood. Here, we show how low- and high-risk HPV types equally exploit a cis-acting mechanism to limit the translation of the E6 mRNA, reducing the production of antigenic peptide substrates for the major histocompatibility class I (MHC-I) pathway. Introducing particular combinations of preferable codons throughout the HPV-16 E6 mRNA promotes mRNA translation and production of antigenic peptide substrates in mammalian cells but has minimal impact on E6 synthesis in Saccharomyces cerevisiae Using a gradual synonymous codon exchange, we identified a codon series with a significant effect on E6 translation rate. Unexpectedly, changing four nonpreferable codons to preferable codons in the wild-type sequence resulted in an ∼50% reduction in E6 expression. However, five additional changes to preferable codons further upstream shifted this inhibition to a strong induction of E6 expression, while they had no effect when introduced alone. These findings suggest a nuanced relationship between tRNA pools and translation rate, emphasizing how HPV uses codon usage to evade immune detection.
Department of Medical Biosciences Building 6M Umeå University 901 85 Umeå Sweden
RECAMO Masaryk Memorial Cancer Institute 65653 Brno Czech Republic
Zobrazit více v PubMed
Ando D, Rashad S, Begley TJ, Endo H, Aoki M, Dedon PC, Niizuma K. 2025. Decoding codon bias: the role of tRNA modifications in tissue-specific translation. Int J Mol Sci 26: 706. 10.3390/ijms26020706 PubMed DOI PMC
Apcher S, Komarova A, Daskalogianni C, Yin Y, Malbert-Colas L, Fahraeus R. 2009. mRNA translation regulation by the Gly-Ala repeat of Epstein-Barr virus nuclear antigen 1. J Virol 83: 1289–1298. 10.1128/JVI.01369-08 PubMed DOI PMC
Apcher S, Daskalogianni C, Lejeune F, Manoury B, Imhoos G, Heslop L, Fahraeus R. 2011. Major source of antigenic peptides for the MHC class I pathway is produced during the pioneer round of mRNA translation. Proc Natl Acad Sci 108: 11572–11577. 10.1073/pnas.1104104108 PubMed DOI PMC
Bach S, Talarek N, Andrieu T, Vierfond JM, Mettey Y, Galons H, Dormont D, Meijer L, Cullin C, Blondel M. 2003. Isolation of drugs active against mammalian prions using a yeast-based screening assay. Nat Biotechnol 21: 1075–1081. 10.1038/nbt855 PubMed DOI
Barrington CL, Galindo G, Koch AL, Horton ER, Morrison EJ, Tisa S, Stasevich TJ, Rissland OS. 2023. Synonymous codon usage regulates translation initiation. Cell Rep 42: 113413. 10.1016/j.celrep.2023.113413 PubMed DOI PMC
Chandrasekaran V, Juszkiewicz S, Choi J, Puglisi JD, Brown A, Shao S, Ramakrishnan V, Hegde RS. 2019. Mechanism of ribosome stalling during translation of a poly(A) tail. Nat Struct Mol Biol 26: 1132–1140. 10.1038/s41594-019-0331-x PubMed DOI PMC
Chen Y, Egawa N, Zheng K, Doorbar J. 2025. How can HPV E6 manipulate host cell differentiation process to maintain the reservoir of infection. Tumour Virus Res 19: 200313. 10.1016/j.tvr.2025.200313 PubMed DOI PMC
Dittmar KA, Goodenbour JM, Pan T. 2006. Tissue-specific differences in human transfer RNA expression. PLoS Genet 2: e221. 10.1371/journal.pgen.0020221 PubMed DOI PMC
Doorbar J. 2013. Latent papillomavirus infections and their regulation. Curr Opin Virol 3: 416–421. 10.1016/j.coviro.2013.06.003 PubMed DOI
Fusee L, Salomao N, Ponnuswamy A, Wang L, Lopez I, Chen S, Gu X, Polyzoidis S, Vadivel Gnanasundram S, Fahraeus R. 2023. The p53 endoplasmic reticulum stress-response pathway evolved in humans but not in mice via PERK-regulated PubMed DOI PMC
Gajjar M, Candeias MM, Malbert-Colas L, Mazars A, Fujita J, Olivares-Illana V, Fahraeus R. 2012. The PubMed DOI
Garcia A, Maldonado G, Gonzalez JL, Svitkin Y, Cantu D, Garcia-Carranca A, Sonenberg N, Hernandez G. 2021. High-risk human papillomavirus-18 uses an mRNA sequence to synthesize oncoprotein E6 in tumors. Proc Natl Acad Sci 118: e2108359118. PubMed PMC
Gingold H, Tehler D, Christoffersen NR, Nielsen MM, Asmar F, Kooistra SM, Christophersen NS, Christensen LL, Borre M, Sorensen KD, et al. 2014. A dual program for translation regulation in cellular proliferation and differentiation. Cell 158: 1281–1292. 10.1016/j.cell.2014.08.011 PubMed DOI
Gnanasundram SV, Pyndiah S, Daskalogianni C, Armfield K, Nylander K, Wilson JB, Fahraeus R. 2017. PI3Kδ activates E2F1 synthesis in response to mRNA translation stress. Nat Commun 8: 2103. 10.1038/s41467-017-02282-w PubMed DOI PMC
Gorochowski TE, Ignatova Z, Bovenberg RA, Roubos JA. 2015. Trade-offs between tRNA abundance and mRNA secondary structure support smoothing of translation elongation rate. Nucleic Acids Res 43: 3022–3032. 10.1093/nar/gkv199 PubMed DOI PMC
Heck DV, Yee CL, Howley PM, Munger K. 1992. Efficiency of binding the retinoblastoma protein correlates with the transforming capacity of the E7 oncoproteins of the human papillomaviruses. Proc Natl Acad Sci 89: 4442–4446. 10.1073/pnas.89.10.4442 PubMed DOI PMC
Hernandez-Alias X, Benisty H, Schaefer MH, Serrano L. 2021. Translational adaptation of human viruses to the tissues they infect. Cell Rep 34: 108872. 10.1016/j.celrep.2021.108872 PubMed DOI PMC
Juszkiewicz S, Slodkowicz G, Lin Z, Freire-Pritchett P, Peak-Chew SY, Hegde RS. 2020. Ribosome collisions trigger PubMed DOI PMC
Kwun HJ, da Silva SR, Shah IM, Blake N, Moore PS, Chang Y. 2007. Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen 1 mimics Epstein-Barr virus EBNA1 immune evasion through central repeat domain effects on protein processing. J Virol 81: 8225–8235. 10.1128/JVI.00411-07 PubMed DOI PMC
Kwun HJ, da Silva SR, Qin H, Ferris RL, Tan R, Chang Y, Moore PS. 2011. The central repeat domain 1 of Kaposi's sarcoma-associated herpesvirus (KSHV) latency associated-nuclear antigen 1 (LANA1) prevents PubMed DOI PMC
Lista MJ, Martins RP, Billant O, Contesse MA, Findakly S, Pochard P, Daskalogianni C, Beauvineau C, Guetta C, Jamin C, et al. 2017. Nucleolin directly mediates Epstein-Barr virus immune evasion through binding to G-quadruplexes of EBNA1 mRNA. Nat Commun 8: 16043. 10.1038/ncomms16043 PubMed DOI PMC
Longworth MS, Laimins LA. 2004. Pathogenesis of human papillomaviruses in differentiating epithelia. Microbiol Mol Biol Rev 68: 362–372. 10.1128/MMBR.68.2.362-372.2004 PubMed DOI PMC
Martins RP, Malbert-Colas L, Lista MJ, Daskalogianni C, Apcher S, Pla M, Findakly S, Blondel M, Fahraeus R. 2019. Nuclear processing of nascent transcripts determines synthesis of full-length proteins and antigenic peptides. Nucleic Acids Res 47: 3086–3100. 10.1093/nar/gky1296 PubMed DOI PMC
Okunade KS. 2020. Human papillomavirus and cervical cancer. J Obstet Gynaecol 40: 602–608. 10.1080/01443615.2019.1634030 PubMed DOI PMC
Pal A, Kundu R. 2019. Human papillomavirus E6 and E7: the cervical cancer hallmarks and targets for therapy. Front Microbiol 10: 3116. 10.3389/fmicb.2019.03116 PubMed DOI PMC
Prado Martins R, Findakly S, Daskalogianni C, Teulade-Fichou MP, Blondel M, Fahraeus R. 2018. In cellulo protein-mRNA interaction assay to determine the action of G-quadruplex-binding molecules. Molecules 23: 3124. 10.3390/molecules23123124 PubMed DOI PMC
Samorski R, Gissmann L, Osen W. 2006. Codon optimized expression of HPV 16 E6 renders target cells susceptible to E6-specific CTL recognition. Immunol Lett 107: 41–49. 10.1016/j.imlet.2006.07.003 PubMed DOI
Scheffner M, Huibregtse JM, Vierstra RD, Howley PM. 1993. The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 75: 495–505. 10.1016/0092-8674(93)90384-3 PubMed DOI
Steinbach A, Riemer AB. 2018. Immune evasion mechanisms of human papillomavirus: an update. Int J Cancer 142: 224–229. 10.1002/ijc.31027 PubMed DOI
Tellam J, Connolly G, Green KJ, Miles JJ, Moss DJ, Burrows SR, Khanna R. 2004. Endogenous presentation of CD8 PubMed DOI PMC
Torrent M, Chalancon G, de Groot NS, Wuster A, Madan Babu M. 2018. Cells alter their tRNA abundance to selectively regulate protein synthesis during stress conditions. Sci Signal 11: eaat6409. 10.1126/scisignal.aat6409 PubMed DOI PMC
Tuller T, Waldman YY, Kupiec M, Ruppin E. 2010. Translation efficiency is determined by both codon bias and folding energy. Proc Natl Acad Sci 107: 3645–3650. 10.1073/pnas.0909910107 PubMed DOI PMC
Verweij MC, Horst D, Griffin BD, Luteijn RD, Davison AJ, Ressing ME, Wiertz EJ. 2015. Viral inhibition of the transporter associated with antigen processing (TAP): a striking example of functional convergent evolution. PLoS Pathog 11: e1004743. 10.1371/journal.ppat.1004743 PubMed DOI PMC
Voisset C, Daskalogianni C, Contesse MA, Mazars A, Arbach H, Le Cann M, Soubigou F, Apcher S, Fahraeus R, Blondel M. 2014. A yeast-based assay identifies drugs that interfere with immune evasion of the Epstein-Barr virus. Dis Models Mech 7: 435–444. 10.1242/dmm.014308 PubMed DOI PMC
Werness BA, Levine AJ, Howley PM. 1990. Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science 248: 76–79. 10.1126/science.2157286 PubMed DOI
Yewdell JW, Hill AB. 2002. Viral interference with antigen presentation. Nat Immunol 3: 1019–1025. 10.1038/ni1102-1019 PubMed DOI
Yewdell JW, Dersh D, Fahraeus R. 2019. Peptide channeling: the key to MHC class I immunosurveillance? Trends Cell Biol 29: 929–939. 10.1016/j.tcb.2019.09.004 PubMed DOI
Yin Y, Manoury B, Fahraeus R. 2003. Self-inhibition of synthesis and antigen presentation by Epstein-Barr virus-encoded EBNA1. Science 301: 1371–1374. 10.1126/science.1088902 PubMed DOI
Zareie AR, Verma SC. 2023. Nucleolin regulates the expression of Kaposi's sarcoma-associated herpesvirus’ latency-associated nuclear antigen through G-quadruplexes in the mRNA. Viruses 15: 2438. 10.3390/v15122438 PubMed DOI PMC
Zhang G, Hubalewska M, Ignatova Z. 2009. Transient ribosomal attenuation coordinates protein synthesis and co-translational folding. Nat Struct Mol Biol 16: 274–280. 10.1038/nsmb.1554 PubMed DOI
Zhao KN, Gu W, Fang NX, Saunders NA, Frazer IH. 2005. Gene codon composition determines differentiation-dependent expression of a viral capsid gene in keratinocytes in vitro and in vivo. Mol Cell Biol 25: 8643–8655. 10.1128/MCB.25.19.8643-8655.2005 PubMed DOI PMC
Zheng AJ, Thermou A, Guixens Gallardo P, Malbert-Colas L, Daskalogianni C, Vaudiau N, Brohagen P, Granzhan A, Blondel M, Teulade-Fichou MP, et al. 2022a. The different activities of RNA G-quadruplex structures are controlled by flanking sequences. Life Sci Alliance 5: e202101232. 10.26508/lsa.202101232 PubMed DOI PMC
Zheng AJL, Thermou A, Daskalogianni C, Malbert-Colas L, Karakostis K, Le Senechal R, Trang Dinh V, Tovar Fernandez MC, Apcher S, Chen S, et al. 2022b. The nascent polypeptide-associated complex (NAC) controls translation initiation in PubMed DOI PMC