Holobiont-holobiont interactions across host-ectoparasite systems
Language English Country Great Britain, England Media electronic
Document type Journal Article, Review
Grant support
S-MIP-22-52
Lietuvos Mokslo Taryba
PubMed
40993747
PubMed Central
PMC12462341
DOI
10.1186/s13071-025-07026-0
PII: 10.1186/s13071-025-07026-0
Knihovny.cz E-resources
- Keywords
- Ectoparasite, Holobiont, Host, Microbial interactions, Microbiome,
- MeSH
- Diptera microbiology MeSH
- Host-Parasite Interactions * MeSH
- Ticks microbiology MeSH
- Microbiota * MeSH
- Vertebrates microbiology parasitology MeSH
- Symbiosis * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Holobionts - hosts together with their resident microorganisms - provide a framework for studying life as a network of interdependent partners. Within host-ectoparasite holobionts, the dialogue between the two microbiomes offers powerful clues to ecological balance, disease dynamics and evolution. Because each holobiont is structurally and functionally compartmentalised, microbes exchanged at the interface can elicit highly local, niche-specific effects that ripple through the system. This review synthesises evidence for microbiota-to-microbiota interactions in four models: Varroa mite-honeybee, tick-vertebrate, bat fly-bat and mosquito-vertebrate pairs. In all cases, microbes move passively during feeding or contact, then colonise, replicate and modulate physiology and immunity, exerting a longer-lasting influence than transient biochemical cues. We further introduce the idea of indirect modulation, whereby abiotic or biotic factors act on a recipient holobiont through the intermediary of transferred microbes, underscoring the adaptive plasticity of holobiont networks. Bidirectional cross-talk forms self-reinforcing feedback loops that can redefine a microbe as pathogen, symbiont or immunomodulator, and tune its virulence according to context. These mechanisms shape disease transmission, resistance traits and the overall health of both partners. A deeper grasp of such cross-holobiont dynamics will pave the way for microbiota-based vaccines, targeted microbiome engineering and other innovative tools for human, veterinary and environmental health.
Faculty of Science University of South Bohemia České Budějovice Czech Republic
Institute for Insect Biotechnology Justus Liebig University of Giessen Giessen Germany
School of Environmental Sciences University of Guelph Guelph ON Canada
State Scientific Research Institute Nature Research Centre Akademijos G 2 Vilnius Lithuania
See more in PubMed
Hassani MA, Durán P, Hacquard S. Microbial interactions within the plant holobiont. Microbiome. 2018;6:58. PubMed PMC
Dheilly NM. Holobiont–holobiont interactions: redefining host–parasite interactions. PLoS Pathog. 2014;10:e1004093. PubMed PMC
Roughgarden J, Gilbert SF, Rosenberg E, Zilber-Rosenberg I, Lloyd EA. Holobionts as units of selection and a model of their population dynamics and evolution. Biol Theory. 2018;13:44–65.
Garg N. Metabolomics in functional interrogation of individual holobiont members. MSystems. 2021;6:10–1128. PubMed PMC
Zhang S, Song W, Nothias LF, Couvillion SP, Webster N, Thomas T. Comparative metabolomic analysis reveals shared and unique chemical interactions in sponge holobionts. Microbiome. 2022;10:22. PubMed PMC
Williams A. Multiomics data integration, limitations, and prospects to reveal the metabolic activity of the coral holobiont. FEMS Microbiol Ecol. 2024;100:fiae058. PubMed PMC
Hodžić A, Dheilly NM, Cabezas-Cruz A, Berry D. The helminth holobiont: a multidimensional host-parasite-microbiota interaction. Trends Parasitol. 2023;39:91–100. PubMed
Alegado RA, Brown LW, Cao S, Dermenjian RK, Zuzow R, Fairclough SR, et al. A bacterial sulfonolipid triggers multicellular development in the closest living relatives of animals. Elife. 2012;1:e00013. PubMed PMC
Wang X, Zhang A, Miao J, Sun H, Yan G, Wu F, et al. Gut microbiota as important modulator of metabolism in health and disease. RSC Adv. 2018;8:42380–9. PubMed PMC
Aldana M, Robeva R. New challenges in systems biology: understanding the holobiont. Front Physiol. 2021;12:662878. PubMed PMC
Koziy RV, Wood SC, Kozii IV, Van Rensburg CJ, Moshynskyy I, Dvylyuk I, et al. Deformed wing virus infection in honey bees ( PubMed
Moran NA. Genomics of the honey bee microbiome. Curr Opin Insect Sci. 2015;10:22–8. PubMed PMC
Forsgren E, Olofsson TC, Vásquez A, Fries I. Novel lactic acid bacteria inhibiting
Zheng H, Nishida A, Kwong WK, Koch H, Engel P, Steele MI, et al. Metabolism of toxic sugars by strains of the bee gut symbiont PubMed PMC
Zheng H, Powell JE, Steele MI, Dietrich C, Moran NA. Honeybee gut microbiota promotes host weight gain via bacterial metabolism and hormonal signaling. Proc Natl Acad Sci U S A. 2017;114:4775–80. PubMed PMC
Emery O, Schmidt K, Engel P. Immune system stimulation by the gut symbiont PubMed
Mead P. Epidemiology of Lyme disease. Infect Dis Clin North Am. 2022;36:495–521. PubMed
Kurokawa C, Lynn GE, Pedra JH, Pal U, Narasimhan S, Fikrig E. Interactions between PubMed PMC
Groth M, Skrzydlewska E, Dobrzyńska M, Pancewicz S, Moniuszko-Malinowska A. Redox imbalance and its metabolic consequences in tick-borne diseases. Front Cell Infect Microbiol. 2022;12:870398. PubMed PMC
Singh S, Mann B. Insect bite reactions. Indian J Dermatol Venereol Leprol. 2013;79:151–64. PubMed
Schön MP. The tick and I: parasite–host interactions between ticks and humans. J Dtsch Dermatol Ges. 2022;20:818–53. PubMed
Glatz M, Means T, Haas J, Steere AC, Müllegger RR. Characterization of the early local immune response to PubMed PMC
Wikel SK. Host immunity to ticks. Annu Rev Entomol. 1996;41:1–22. PubMed
Talyuli OA, Bottino-Rojas V, Polycarpo CR, Oliveira PL, Paiva-Silva GO. Non-immune traits triggered by blood intake impact vectorial competence. Front Physiol. 2021;12:638033. PubMed PMC
Al-Khafaji AM, Armstrong SD, Varotto Boccazzi I, Gaiarsa S, Sinha A, Li Z, et al. PubMed
Gage KL, Schrumpf ME, Karstens RH, Burgdorfer W, Schwan TG. DNA typing of Rickettsiae in naturally infected ticks using a polymerase chain reaction/restriction fragment length polymorphism system. Am J Trop Med Hyg. 1994;50:247–60. PubMed
Baldridge GD, Burkhardt NY, Simser JA, Kurtti TJ, Munderloh UG. Sequence and expression analysis of the PubMed PMC
Breitschwerdt EB, Kordick DL. PubMed PMC
McKee CD, Bai Y, Webb CT, Kosoy MY. Bats are key hosts in the radiation of mammal-associated Bartonella bacteria. Infect Genet Evol. 2021;89:104719. PubMed PMC
Wilkinson DA, Duron O, Cordonin C, Gomard Y, Ramasindrazana B, Mavingui P, et al. The bacteriome of bat flies (Nycteribiidae) from the Malagasy region: a community shaped by host ecology, bacterial transmission mode, and host-vector specificity. Appl Environ Microbiol. 2016;82:1778–88. PubMed PMC
Pavanelo DB, Piloto-Sardiñas E, Maitre A, Abuin-Denis L, Kopáček P, Cabezas-Cruz A, et al. Arthropod microbiota: shaping pathogen establishment and enabling control. Front Arachn Sci. 2023;2:1297733.
Duron O, Bouchon D, Boutin S, Bellamy L, Zhou L, Engelstädter J, et al. The diversity of reproductive parasites among arthropods: PubMed PMC
Xue L, Fang X, Hyman JM. Comparing the effectiveness of different strains of PubMed PMC
Ogunlade ST, Meehan MT, Adekunle AI, Rojas DP, Adegboye OA, McBryde ES. A review: PubMed PMC
O’Neal AJ, Singh N, Mendes MT, Pedra JH. The genus Anaplasma: drawing back the curtain on tick–pathogen interactions. Pathog Dis. 2021;79:ftab022. PubMed PMC
Vanderwolf KJ, Campbell LJ, Goldberg TL, Blehert DS, Lorch JM. Skin fungal assemblages of bats vary based on susceptibility to white-nose syndrome. ISME J. 2021;15:909–20. PubMed PMC
Rosenberg E, Zilber-Rosenberg I. The hologenome concept of evolution after 10 years. Microbiome. 2018;6:78. PubMed PMC
Brooks AW, Kohl KD, Brucker RM, van Opstal EJ, Bordenstein SR. Phylosymbiosis: relationships and functional effects of microbial communities across host evolutionary history. PLoS Biol. 2016;14:e2000225. PubMed PMC
Kohl KD. Ecological and evolutionary mechanisms underlying patterns of phylosymbiosis in host-associated microbial communities. Philos Trans R Soc Lond B Biol Sci. 2020;375:20190251. PubMed PMC
Hubert J, Kopecký J, Nesvorna M, Braig HR, Sagova-Mareckova M. Microscopic analysis of the microbiota of three commercial Phytoseiidae species (Acari: Mesostigmata). Exp Appl Acarol. 2017;72:259–71. 10.1007/s10493-020-00520-3. PubMed PMC
Wang JQ, Yu T, Qiu HY, Ji SW, Xu ZQ, Cui QC. Differential impact of spotted fever group rickettsia and anaplasmosis on tick microbial ecology: evidence from multi-species comparative microbiome analysis. Front Microbiol. 2025;16:1589263. PubMed PMC
Ruiz-López MJ. Mosquito behavior and vertebrate microbiota interaction: implications for pathogen transmission. Front Microbiol. 2020;11:573371. PubMed PMC
Singh BK, Liu H, Trivedi P. Eco-holobiont: a new concept to identify drivers of host-associated microorganisms. Environ Microbiol. 2020;22:564–7. PubMed
Silva LM, Acerbi G, Amann M, Koella JC. Exposure to PubMed PMC
Mateos-Hernández L, Obregón D, Maye J, Borneres J, Versille N, De La Fuente J, et al. Anti-tick microbiota vaccine impacts PubMed PMC
Mateos-Hernández L, Obregón D, Wu-Chuang A, Maye J, Bornères J, Versillé N, et al. Anti-microbiota vaccines modulate the tick microbiome in a taxon-specific manner. Front Immunol. 2021;12:704621. PubMed PMC
Wu-Chuang A, Obregon D, Mateos-Hernández L, Cabezas-Cruz A. Anti-tick microbiota vaccines: how can this actually work? Biol. 2022;77:1555–62.
Wu-Chuang A, Mateos-Hernandez L, Maitre A, Rego ROM, Šíma R, Porcelli S, et al. Microbiota perturbation by anti-microbiota vaccine reduces the colonization of PubMed PMC
Gallai N, Salles J-M, Settele J, Vaissière BE. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol Econ. 2009;68:810–21.
Steinhauer NA, Rennich K, Wilson ME, Caron DM, Lengerich EJ, Pettis JS, et al. A national survey of managed honey bee 2012–2013 annual colony losses in the USA: results from the Bee Informed Partnership. J Apic Res. 2014;53:1–18.
Kulhanek K, Steinhauer N, Rennich K, Caron DM, Sagili RR, Pettis JS, et al. A national survey of managed honey bee 2015–2016 annual colony losses in the USA. J Apic Res. 2017;56:328.
Gray A, Adjlane N, Arab A, Ballis A, Brusbardis V, Bugeja Douglas A, et al. Honey bee colony loss rates in 37 countries using the COLOSS survey for winter 2019–2020: the combined effects of operation size, migration and queen replacement. J Apic Res. 2023;62:204–10.
Francis RM, Nielsen SL, Kryger P. PubMed PMC
Skičková Š, Svobodová K, Maitre A, Wu-Chuang A, Abuin-Denis L, Piloto-Sardiñas E, et al. Differential impact of PubMed PMC
Skičková Š, Kratou M, Svobodová K, Maitre A, Abuin-Denis L, Wu-Chuang A, et al. Functional redundancy and niche specialization in honeybee and PubMed
Garcia-Gonzalez E, Müller S, Hertlein G, Heid N, Süssmuth RD, Genersch E. Biological effects of paenilamicin, a secondary metabolite antibiotic produced by the honey bee pathogenic bacterium PubMed PMC
Wang B, Cheng H, Qian W, Zhao W, Liang C, Liu C, et al. Comparative genome analysis and mining of secondary metabolites of PubMed
Hertlein G, Seiffert M, Gensel S, Garcia-Gonzalez E, Ebeling J, Skobalj R, et al. Biological role of paenilarvins, iturin-like lipopeptide secondary metabolites produced by the honey bee pathogen Paenibacillus larvae. PLoS ONE. 2016;11:e0164656. PubMed PMC
Truong A-T, Kang JE, Yoo M-S, Nguyen TT, Youn S-Y, Yoon S-S, et al. Probiotic candidates for controlling PubMed PMC
Olofsson TC, Butler È, Markowicz P, Lindholm C, Larsson L, Vásquez A. Lactic acid bacterial symbionts in honeybees – an unknown key to honey’s antimicrobial and therapeutic activities. Int Wound J. 2016;13:668–79. PubMed PMC
Doublet V, Poeschl Y, Gogol-Döring A, Alaux C, Annoscia D, Aurori C, et al. Unity in defence: honeybee workers exhibit conserved molecular responses to diverse pathogens. BMC Genomics. 2017;18:207. PubMed PMC
Zanni V, Galbraith DA, Annoscia D, Grozinger CM, Nazzi F. Transcriptional signatures of parasitization and markers of colony decline in PubMed
Kunc M, Dobeš P, Ward R, Lee S, Čegan R, Dostálková S, et al. Omics-based analysis of honey bee ( PubMed
Kuster RD, Boncristiani HF, Rueppell O. Immunogene and viral transcript dynamics during parasitic PubMed
Marche MG, Satta A, Floris I, Pusceddu M, Buffa F, Ruiu L. Quantitative variation in the core bacterial community associated with honey bees from
Kim M, Kim WJ, Park S-J. Analyzing gut microbial community in PubMed PMC
Mookhploy W, Krongdang S, Chantawannakul P. Effects of deformed wing virus infection on expressions of immune- and apoptosis-related genes in western honeybees ( PubMed PMC
Kwong WK, Mancenido AL, Moran NA. Immune system stimulation by the native gut microbiota of honey bees. R Soc Open Sci. 2017;4:170003. PubMed PMC
Kanbar G, Engels W. Ultrastructure and bacterial infection of wounds in honey bee ( PubMed
Raymann K, Shaffer Z, Moran NA. Antibiotic exposure perturbs the gut microbiota and elevates mortality in honeybees. PLoS Biol. 2017;15:e2001861. PubMed PMC
Schwarz RS, Moran NA, Evans JD. Early gut colonizers shape parasite susceptibility and microbiota composition in honey bee workers. Proc Natl Acad Sci U S A. 2016;113:9345–50. PubMed PMC
Dosch C, Manigk A, Streicher T, Tehel A, Paxton RJ, Tragust S. The gut microbiota can provide viral tolerance in the honey bee. Microorganisms. 2021;9:871. PubMed PMC
Cabezas-Cruz A, Piloto-Sardiñas E, Tonnerre P, Lucas-Torres C, Obregon D. Cross-species immune activation and immunobiotics: a new frontier in vector-borne pathogen control. Trends Parasitol. 2025;41:290–300. PubMed
Díaz-Sánchez S, Estrada-Peña A, Cabezas-Cruz A, De La Fuente J. Evolutionary insights into the tick hologenome. Trends Parasitol. 2019;35:725–37. PubMed
Bernardo-Cravo AP, Schmeller DS, Chatzinotas A, Vredenburg VT, Loyau A. Environmental factors and host microbiomes shape host-pathogen dynamics. Trends Parasitol. 2020;36:616–33. PubMed
Vayssier-Taussat M, Albina E, Citti C, Cosson JF, Jacques MA, Lebrun MH, et al. Shifting the paradigm from pathogens to pathobiome: new concepts in the light of meta-omics. Front Cell Infect Microbiol. 2014. 10.3389/fcimb.2014.00029/abstract. PubMed PMC
Bass D, Stentiford GD, Wang H-C, Koskella B, Tyler CR. The pathobiome in animal and plant diseases. Trends Ecol Evol. 2019;34:996–1008. PubMed PMC
Estrada-Peña A, Cabezas-Cruz A, Obregón D. Resistance of tick gut microbiome to anti-tick vaccines, pathogen infection and antimicrobial peptides. Pathogens. 2020;9:309. PubMed PMC
Estrada-Peña A, Cabezas-Cruz A, Obregón D. Behind taxonomic variability: the functional redundancy in the tick microbiome. Microorganisms. 2020;8:1829. PubMed PMC
Boulanger N, Insonere J-L-M, Van Blerk S, Barthel C, Serres C, Rais O, et al. Cross-alteration of murine skin and tick microbiome concomitant with pathogen transmission after PubMed PMC
Schommer NN, Gallo RL. Structure and function of the human skin microbiome. Trends Microbiol. 2013;21:660–8. PubMed PMC
Belkaid Y, Tamoutounour S. The influence of skin microorganisms on cutaneous immunity. Nat Rev Immunol. 2016;16:353–66. PubMed
Chung YW, Gwak HJ, Moon S, Rho M, Ryu JH. Functional dynamics of bacterial species in the mouse gut microbiome revealed by metagenomic and metatranscriptomic analyses. PLoS ONE. 2020;15:e0227886. PubMed PMC
Sibai M, Altuntaş E, Yıldırım B, Öztürk G, Yıldırım S, Demircan T. Microbiome and longevity: high abundance of longevity-linked Muribaculaceae in the gut of the long-living rodent PubMed
Liu R, Peng C, Jing D, Xiao Y, Zhu W, Zhao S, et al. PubMed
Hawlena H, Rynkiewicz E, Toh E, Alfred A, Durden LA, Hastriter MW, et al. The arthropod, but not the vertebrate host or its environment, dictates bacterial community composition of fleas and ticks. ISME J. 2013;7:221–3. PubMed PMC
Rynkiewicz EC, Hemmerich C, Rusch DB, Fuqua C, Clay K. Concordance of bacterial communities of two tick species and blood of their shared rodent host. Mol Ecol. 2015;24:2566–79. PubMed
Zolnik CP, Prill RJ, Falco RC, Daniels TJ, Kolokotronis S. Microbiome changes through ontogeny of a tick pathogen vector. Mol Ecol. 2016;25:4963–77. PubMed
Landesman WJ, Mulder K, Allan BF, Bashor LA, Keesing F, LoGiudice K, et al. Potential effects of blood meal host on bacterial community composition in PubMed PMC
Aželytė J, Wu-Chuang A, Žiegytė R, Platonova E, Mateos-Hernandez L, Maye J, et al. Anti-microbiota vaccine reduces avian malaria infection within mosquito vectors. Front Immunol. 2022;13:841835. PubMed PMC
Smith AA, Navasa N, Yang X, Wilder CN, Buyuktanir O, Marques A, et al. Cross-species interferon signaling boosts microbicidal activity within the tick vector. Cell Host Microbe. 2016;20:91–8. PubMed PMC
Surachetpong W, Singh N, Cheung KW, Luckhart S. MAPK ERK signaling regulates the TGF-β1-dependent mosquito response to PubMed PMC
Samantsidis GR, Kwon H, Wendland M, Fonder C, Smith RC. TNF signaling mediates cellular immune function and promotes malaria parasite killing in the mosquito PubMed PMC
Cano-Argüelles AL, Piloto-Sardiñas E, Maitre A, Mateos-Hernández L, Maye J, Wu-Chuang A, et al. Microbiota-driven vaccination in soft ticks: implications for survival, fitness and reproductive capabilities in PubMed
Obregón D, Bard E, Abrial D, Estrada-Peña A, Cabezas-Cruz A. Sex-specific linkages between taxonomic and functional profiles of tick gut microbiomes. Front Cell Infect Microbiol. 2019;9:298. PubMed PMC
Gough JM, Kemp DH. Localization of a low abundance membrane protein (Bm86) on the gut cells of the cattle tick PubMed
Willadsen P. Novel vaccines for ectoparasites. Vet Parasitol. 1997;71:209–22. PubMed
Belperron AA, Bockenstedt LK. Natural antibody affects survival of the spirochete PubMed PMC
Maitre A, Wu-Chuang A, Aželytė J, Palinauskas V, Mateos-Hernández L, Obregon D, et al. Vector microbiota manipulation by host antibodies: the forgotten strategy to develop transmission-blocking vaccines. Parasit Vectors. 2022;15:4. PubMed PMC
Kumar M, Kaur S, Kariu T, Yang X, Bossis I, Anderson JF, et al. PubMed PMC
Dobson AP. What links bats to emerging infectious diseases? Science. 2005;310:628–9. PubMed
Calisher CH, Childs JE, Field HE, Holmes KV, Schountz T. Bats: important reservoir hosts of emerging viruses. Clin Microbiol Rev. 2006;19:531–45. PubMed PMC
Reeves WK, Beck J, Orlova MV, Daly JL, Pippin K, Revan F, et al. Ecology of bats, their ectoparasites, and associated pathogens on Saint Kitts Island. J Med Entomol. 2016;53:1218–25. PubMed
Szentiványi T, Christe P, Glaizot O. Bat flies and their microparasites: current knowledge and distribution. Front Vet Sci. 2019;6:115. PubMed PMC
Dick CW, Dittmar K. Parasitic bat flies (Diptera: Streblidae and Nycteribiidae): host specificity and potential as vectors. In: Klimpel S, Mehlhorn H, editors. Bats (Chiroptera) as Vectors of Diseases and Parasites. Heidelberg: Springer; 2014.
Dick CW, Patterson BD. Bat flies: obligate ectoparasites of bats. In: Morand S, Krasnov BR, Poulin R, editors. Micromammals and Macroparasites [Internet]. Tokyo: Springer; 2006.
Herrera GL, Gutierrez E, Hobson KA, Altube B, Díaz WG, Sánchez-Cordero V. Sources of assimilated protein in five species of New World frugivorous bats. Oecologia. 2002;133:280–7. PubMed
Fenton BM, Simmons N. Bats: a world of science and mystery. Chicago: The University of Chicago Press; 2014.
Bai Y, Osinubi MOV, Osikowicz L, McKee C, Vora NM, Rizzo MR, et al. Human exposure to novel PubMed PMC
Sakoui S, Derdak R, Addoum B, Serrano-Delgado A, Soukri A, El Khalfi B. The life hidden inside caves: ecological and economic importance of bat guano. Int J Ecol. 2020;2020:2020:7.
Veikkolainen V, Vesterinen EJ, Lilley TM, Pulliainen AT. Bats as reservoir hosts of human bacterial pathogen, PubMed PMC
Boulouis H-J, Chao-chin C, Henn JB, Kasten RW, Chomel BB. Factors associated with the rapid emergence of zoonotic PubMed
Spach DH, Koehler JE. Bartonella-associated infections. Infect Dis Clin North Am. 1998;12:137–55. PubMed
Urushadze L, Bai Y, Osikowicz L, McKee C, Sidamonidze K, Putkaradze D, et al. Prevalence, diversity, and host associations of Bartonella strains in bats from Georgia (Caucasus). PLoS Negl Trop Dis. 2017;11:e0005428. PubMed PMC
Davoust B, Marié J-L, Dahmani M, Berenger J-M, Bompar J-M, Blanchet D, et al. Evidence of PubMed
Loftis AD, Gill JS, Schriefer ME, Levin ML, Eremeeva ME, Gilchrist MJR, et al. Detection of PubMed
Banyard AC, Hayman DTS, Freuling CM, Müller T, Fooks AR, Johnson N. Bat rabies rabies: scientific basis of the disease and its management [Internet]. Cambridge: Academic Press; 2013.
Leroy EM, Kumulungui B, Pourrut X, Rouquet P, Hassanin A, Yaba P, et al. Fruit bats as reservoirs of Ebola virus. Nature. 2005;438:575–6. PubMed
Epstein JH, Field HE, Luby S, Pulliam JRC, Daszak P. Nipah virus: impact, origins, and causes of emergence. Curr Infect Dis Rep. 2006;8:59–65. PubMed PMC
Banerjee A, Kulcsar K, Misra V, Frieman M, Mossman K. Bats and coronaviruses. Viruses. 2019;11:41. PubMed PMC
Wang L-F, Shi Z, Zhang S, Field H, Daszak P, Eaton B. Review of bats and SARS. Emerg Infect Dis. 2006;12:1834–40. PubMed PMC
Zhao H. COVID-19 drives new threat to bats in China. Science. 2020;367:1436–1436. PubMed
Xu Z, Feng Y, Chen X, Shi M, Fu S, Yang W, et al. Virome of bat-infesting arthropods: highly divergent viruses in different vectors. J Virol. 2022;96:e0146421. PubMed PMC
Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu G, Pyke AT, Hedges LM, et al. A PubMed
Simón F, González-Miguel J, Diosdado A, Gómez PJ, Morchón R, Kartashev V. The complexity of zoonotic filariasis episystem and its consequences: a multidisciplinary view. Biomed Res Int. 2017;2017:6436130. PubMed PMC
WHO. World malaria report 2023. Geneva: World Health Organization; 2023.
Romoli O, Gendrin M. The tripartite interactions between the mosquito, its microbiota and PubMed PMC
Guégan M, Zouache K, Démichel C, Minard G, Tran Van V, Potier P, et al. The mosquito holobiont: fresh insight into mosquito-microbiota interactions. Microbiome. 2018;6:49. PubMed PMC
Romoli O, Schönbeck JC, Hapfelmeier S, Gendrin M. Production of germ-free mosquitoes via transient colonisation allows stage-specific investigation of host–microbiota interactions. Nat Commun. 2021;12:942. PubMed PMC
Mancini MV, Damiani C, Accoti A, Tallarita M, Nunzi E, Cappelli A, et al. Estimating bacteria diversity in different organs of nine species of mosquito by next generation sequencing. BMC Microbiol. 2018;18:126. PubMed PMC
Accoti A, Damiani C, Nunzi E, Cappelli A, Iacomelli G, Monacchia G, et al. Anopheline mosquito saliva contains bacteria that are transferred to a mammalian host through blood feeding. Front Microbiol. 2023;14:1157613. PubMed PMC
Onyango MG, Payne AF, Stout J, Dieme C, Kuo L, Kramer LD, et al. PubMed PMC
Devenport M, Fujioka H, Jacobs-Lorena M. Storage and secretion of the peritrophic matrix protein Ag-Aper1 and trypsin in the midgut of PubMed
Kumar S, Molina-Cruz A, Gupta L, Rodrigues J, Barillas-Mury C. A peroxidase/dual oxidase system modulates midgut epithelial immunity in PubMed PMC
Hatfield PR. Detection and localization of antibody ingested with a mosquito bloodmeal. Med Vet Entomol. 1988;2:339–45. PubMed
Vaughan JA, Azad AF. Passage of host immunoglobulin G from blood meal into hemolymph of selected mosquito species (Diptera: Culicidae). J Med Entomol. 1988;25:472–4. PubMed
Meyers JI, Gray M, Foy BD. Mosquitocidal properties of IgG targeting the glutamate-gated chloride channel in three mosquito disease vectors (Diptera: Culicidae). J Exp Biol. 2015;218:1487–95. PubMed PMC
Shi H, Yu X, Cheng G. Impact of the microbiome on mosquito-borne diseases. Protein Cell. 2023;14:743–61. PubMed PMC
Lutz M, Knaus P. Integration of the TGF- PubMed
Luckhart S, Crampton AL, Zamora R, Lieber MJ, Dos Santos PC, Peterson TML, et al. Mammalian transforming growth factor PubMed PMC
Cappelli A, Damiani C, Mancini MV, Valzano M, Rossi P, Serrao A, et al. PubMed PMC
Takken W, Verhulst NO. Chemical signaling in mosquito–host interactions: the role of human skin microbiota. Curr Opin Insect Sci. 2017;20:68–74. PubMed
Byrd AL, Belkaid Y, Segre JA. The human skin microbiome. Nat Rev Microbiol. 2018;16:143–55. PubMed
Boissière A, Tchioffo MT, Bachar D, Abate L, Marie A, Nsango SE, et al. Midgut microbiota of the malaria mosquito vector Anopheles gambiae and interactions with Plasmodium falciparum infection. PLoS Pathog. 2012;8:e1002742. PubMed PMC
Busula AO, Verhulst NO, Bousema T, Takken W, De Boer JG. Mechanisms of PubMed
Tchioffo MT, Boissière A, Abate L, Nsango SE, Bayibéki AN, Awono-Ambéné PH, et al. Dynamics of bacterial community composition in the malaria mosquito’s epithelia. Front. 2016. 10.3389/fmicb.2015.01500/abstract. PubMed PMC
Videvall E, Marzal A, Magallanes S, Fleischer RC, Espinoza K, García-Longoria L. The uropygial gland microbiome of house sparrows with malaria infection. J Avian Biol. 2021. 10.1111/jav.02686.
De Boer JG, Robinson A, Powers SJ, Burgers SLGE, Caulfield JC, Birkett MA, et al. Odours of PubMed PMC
Matthews JL. Editorial: holobiont interactions. Front Ecol Evol. 2024;12:1382169.
Greer R, Dong X, Morgun A, Shulzhenko N. Investigating a holobiont: microbiota perturbations and transkingdom networks. Gut Microbes. 2016;7:126–35. PubMed PMC
World Mosquito Program. (2025). Reducing mosquito-borne diseases with