• This record comes from PubMed

Smart Nanomedicines for Neurodegenerative Diseases: Empowering New Therapies with Molecular Imaging and Artificial Intelligence

. 2025 Oct 09 ; () : . [epub] 20251009

Status Publisher Language English Country New Zealand Media print-electronic

Document type Journal Article, Review

Links

PubMed 41066060
DOI 10.1007/s40291-025-00813-6
PII: 10.1007/s40291-025-00813-6
Knihovny.cz E-resources

Neurodegenerative diseases (NDDs) remain among the most challenging disorders to treat, owing to their multifactorial pathology, limited drug delivery across the blood-brain barrier, and lack of effective disease-modifying therapies. Smart nanomedicines are emerging as powerful tools to overcome these challenges by enabling targeted delivery, controlled release, and enhanced bioavailability of therapeutics. In parallel, advances in molecular imaging, combined with machine learning (ML) and artificial intelligence (AI), are transforming the design, validation, and optimization of nanomedicines. This article integrates the rapidly evolving fields of nanomedicine and AI/ML-driven imaging to evaluate their synergistic potential toward NDD therapy. The capabilities of AI-aided imaging for mapping nanomedicine biodistribution, predicting therapeutic outcomes, guiding nanoparticle design, and ensuring quality control at preclinical and clinical stages in NDDs are discussed. This synergistic approach opens new avenues for precision medicine, enabling personalized and adaptive treatment strategies for Alzheimer's, Parkinson's, and other NDDs by linking smart nanocarriers with intelligent imaging analytics. Hence, this article presents a roadmap for translating AI-guided nanomedicine-integrated imaging platforms into clinically viable solutions, marking a paradigm shift in the diagnosis and treatment of NDDs.

See more in PubMed

Teleanu RI, Niculescu A-G, Roza E, Vladâcenco O, Grumezescu AM, Teleanu DM. Neurotransmitters—key factors in neurological and neurodegenerative disorders of the central nervous system. Int J Mol Sci. 2022;23:5954. PubMed DOI PMC

Ranjan V, Verma K. Brief description of public health and burden of neurodegenerative diseases. In: Qidwai T, editor. Neurodegenerative diseases: multifactorial degenerative processes, biomarkers and therapeutic approaches. Bentham Science Publishers; 2022. p. 261–72. DOI

World Health Organization. Over 1 in 3 people affected by neurological conditions, the leading cause of illness and disability worldwide. Geneva: World Health Organization; 2024.

Scheltens P, De Strooper B, Kivipelto M, Holstege H, Chételat G, Teunissen CE, Cummings J, van der Flier WM. Alzheimer’s disease. Lancet. 2021;397:1577–90. PubMed DOI PMC

Weintraub D, Aarsland D, Chaudhuri KR, Dobkin RD, Leentjens AF, Rodriguez-Violante M, Schrag A. The neuropsychiatry of Parkinson’s disease: advances and challenges. Lancet Neurol. 2022;21:89–102. PubMed DOI PMC

Feldman EL, Goutman SA, Petri S, Mazzini L, Savelieff MG, Shaw PJ, Sobue G. Amyotrophic lateral sclerosis. Lancet. 2022;400:1363–80. PubMed DOI PMC

Lu M, Zhao Q, Poston KL, Sullivan EV, Pfefferbaum A, Shahid M, Katz M, Montaser-Kouhsari L, Schulman K, Milstein A. Quantifying Parkinson’s disease motor severity under uncertainty using MDS-UPDRS videos. Med Image Anal. 2021;73: 102179. PubMed DOI PMC

Exuzides A, Matos JE, Patel AM, Martin AA, Ricker B, Bega D. Understanding the burdens associated with Huntington’s disease in manifest patients and care partners—comparing to Parkinson’s disease and the general population. Brain Sci. 2022;12:161. PubMed DOI PMC

Zhang X-X, Tian Y, Wang Z-T, Ma Y-H, Tan L, Yu J-T. The epidemiology of Alzheimer’s disease modifiable risk factors and prevention. J Prev Alzheimers Dis. 2021;8:313–21. PubMed DOI PMC

Mead RJ, Shan N, Reiser HJ, Marshall F, Shaw PJ. Amyotrophic lateral sclerosis: a neurodegenerative disorder poised for successful therapeutic translation. Nat Rev Drug Discov. 2023;22:185–212. PubMed DOI

Huang Y, Li Y, Pan H, Han L. Global, regional, and national burden of neurological disorders in 204 countries and territories worldwide. J Glob Health. 2023. https://doi.org/10.7189/jogh.13.04160 . PubMed DOI PMC

Palanisamy CP, Pei J, Alugoju P, Anthikapalli NVA, Jayaraman S, Veeraraghavan VP, Gopathy S, Roy JR, Janaki CS, Thalamati D. New strategies of neurodegenerative disease treatment with extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs). Theranostics. 2023;13:4138. PubMed DOI PMC

Vissers MF, Heuberger JA, Groeneveld GJ. Targeting for success: demonstrating proof-of-concept with mechanistic early phase clinical pharmacology studies for disease-modification in neurodegenerative disorders. Int J Mol Sci. 2021;22:1615. PubMed DOI PMC

Naziris N, Demetzos C. Advanced health technologies and nanotechnologies in neurodegenerative diseases. In: Vlamos P, editor. GeNeDis: genetics and neurodegenerative diseases. Springer; 2021. p. 317–20.

Zaky MY, Mohamed EE, Ahmed OM. Neurodegenerative disorders: available therapies and their limitations. In: Khalifa MMAH, editor. Nanocarriers in neurodegenerative disorders. CRC Press; 2025. p. 29–46.

Akhtar A, Andleeb A, Waris TS, Bazzar M, Moradi A-R, Awan NR, Yar M. Neurodegenerative diseases and effective drug delivery: a review of challenges and novel therapeutics. J Controlled Release. 2021;330:1152–67. DOI

Lamptey RN, Chaulagain B, Trivedi R, Gothwal A, Layek B, Singh J. A review of the common neurodegenerative disorders: current therapeutic approaches and the potential role of nanotherapeutics. Int J Mol Sci. 2022;23:1851. PubMed DOI PMC

Hassanzadeh-Khanmiri M, Moshari A, Kheradmand R, Haghgouei T, Homaei M, Charsouei S, Mobed A. Nanomedicine: a cost-effective and powerful platform for managing neurodegenerative diseases. Metab Brain Dis. 2025;40:142. PubMed DOI

Waqar MA, Mubarak N, Khan AM, Ahmad S, Zaib M, Kanwal U, Khan IN, Ayesha M, Mughal M, Fahad M. Innovation in nanomedicine: nanocarriers for central nervous system disorders management. Int J Polym Mater Polym Biomater. 2025;74:1110–27. DOI

Thapa RK, Kim JO. Nanomedicine-based commercial formulations: current developments and future prospects. J Pharm Investig. 2023;53:19–33. PubMed DOI

Butt A, Bach H. Nanomedicine and clinical diagnostics part I: applications in conventional imaging (MRI, X-ray/CT, and ultrasound). Nanomedicine. 2025;20:167–82. PubMed DOI

Lu W, Yao J, Zhu X, Qi Y. Nanomedicines: redefining traditional medicine. Biomed Pharmacother. 2021;134: 111103. PubMed DOI

Singaravelu S, Motsoene F, Abrahamse H, Dhilip Kumar SS. Green-synthesized metal nanoparticles: a promising approach for accelerated wound healing. Front Bioeng Biotechnol. 2025;13:1637589. PubMed DOI PMC

Jeevanandam J, Kiew SF, Boakye-Ansah S, Lau SY, Barhoum A, Danquah MK, Rodrigues J. Green approaches for the synthesis of metal and metal oxide nanoparticles using microbial and plant extracts. Nanoscale. 2022;14:2534–71. PubMed DOI

Ramanathan S, Gopinath SC, Arshad MM, Poopalan P, Perumal V. Nanoparticle synthetic methods: strength and limitations. In: Thirugnanasambandan T, Gopinath SCB, Gang F, editors. Nanoparticles in analytical and medical devices. Elsevier; 2021. p. 31–43. DOI

Reddy KR, Reddy PA, Reddy CV, Shetti NP, Babu B, Ravindranadh K, Shankar MV, Reddy MC, Soni S, Naveen S. Functionalized magnetic nanoparticles/biopolymer hybrids: synthesis methods, properties and biomedical applications. In: Gurtler V, Ball AS, Soni S, editors. Methods in microbiology, vol. 46. Elsevier; 2019. p. 227–54.

Kirubakaran D, Wahid JBA, Karmegam N, Jeevika R, Sellapillai L, Rajkumar M, SenthilKumar KA. Comprehensive review on the green synthesis of nanoparticles: advancements in biomedical and environmental applications. Biomed Mater Devices. 2025:1–26.

Mukherjee S, Madamsetty VS, Bhattacharya D, Roy Chowdhury S, Paul MK, Mukherjee A. Recent advancements of nanomedicine in neurodegenerative disorders theranostics. Adv Funct Mater. 2020;30:2003054. DOI

Serov N, Vinogradov V. Artificial intelligence to bring nanomedicine to life. Adv Drug Delivery Rev. 2022;184: 114194. DOI

Heydari S, Masoumi N, Esmaeeli E, Ayyoubzadeh SM, Ghorbani-Bidkorpeh F, Ahmadi M. Artificial intelligence in nanotechnology for treatment of diseases. J Drug Target. 2024;32:1247–66. PubMed DOI

IHME IfHMaE. (2024). “Death rate from Parkinson’s disease. In: Global burden of disease—deaths and DALYs” [original data], vol 2025. I. f. H. M. a. Evaluation ed, Institute for Health Metrics and Evaluation, United States.

Gustavsson A, Norton N, Fast T, Frölich L, Georges J, Holzapfel D, Kirabali T, Krolak-Salmon P, Rossini PM, Ferretti MT. Global estimates on the number of persons across the Alzheimer’s disease continuum. Alzheimers Dement. 2023;19:658–70. PubMed DOI

Kumar A, Sidhu J, Lui F, Tsao JW. Alzheimer disease. In: StatPearls [Internet]. Treasure Island, FL: StatPearls Publishing; 2024.  https://www.ncbi.nlm.nih.gov/books/NBK499922/ .

Ovsepian SV, O’Leary VB, Zaborszky L. Cholinergic mechanisms in the cerebral cortex: beyond synaptic transmission. Neuroscientist. 2016;22:238–51. PubMed DOI

Ovsepian SV, O’Leary VB, Hoschl C, Zaborszky L. Integrated phylogeny of the human brain and pathobiology of Alzheimer’s disease: a unifying hypothesis. Neurosci Lett. 2021;755: 135895. PubMed DOI PMC

Hampel H, Mesulam M-M, Cuello AC, Farlow MR, Giacobini E, Grossberg GT, Khachaturian AS, Vergallo A, Cavedo E, Snyder PJ. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain. 2018;141:1917–33. PubMed DOI PMC

Paroni G, Bisceglia P, Seripa D. Understanding the amyloid hypothesis in Alzheimer’s disease. J Alzheimers Dis. 2019;68:493–510. PubMed DOI

Budson AE, Solomon PR. Memory loss, Alzheimer’s disease, and dementia-E-book: a practical guide for clinicians. Amsterdam: Elsevier Health Sciences; 2021.

Luo Y, Qiao L, Li M, Wen X, Zhang W, Li X. Global, regional, national epidemiology and trends of Parkinson’s disease from 1990 to 2021: findings from the global burden of disease study 2021. Front Aging Neurosci. 2025;16:1498756. PubMed DOI PMC

Kouli A, Torsney KM, Kuan W-L. Parkinson’s disease: etiology, neuropathology, and pathogenesis. In: Stoker TB, Greenland JC, editors. Parkinson’s disease: pathogenesis and clinical aspects. Brisbane: Codon Publications; 2018. https://doi.org/10.15586/codonpublications.parkinsonsdisease.2018 . DOI

Zhou ZD, Yi LX, Wang DQ, Lim TM, Tan EK. Role of dopamine in the pathophysiology of Parkinson’s disease. Transl Neurodegener. 2023;12:44. PubMed DOI PMC

Sveinbjornsdottir S. The clinical symptoms of Parkinson’s disease. J Neurochem. 2016;139:318–24. PubMed DOI

Bloem BR, Okun MS, Klein C. Parkinson’s disease. Lancet. 2021;397:2284–303. PubMed DOI

Xu L, Liu T, Liu L, Yao X, Chen L, Fan D, Zhan S, Wang S. Global variation in prevalence and incidence of amyotrophic lateral sclerosis: a systematic review and meta-analysis. J Neurol. 2020;267:944–53. PubMed DOI

Brotman RG, Moreno-Escobar MC, Joseph J, Pawar G. Amyotrophic lateral sclerosis. In: StatPearls [Internet]. Treasure Island, FL: StatPearls Publishing; 2023.  https://www.ncbi.nlm.nih.gov/books/NBK556151/ .

Ovsepian SV, O’Leary VB, Martinez S. Selective vulnerability of motor neuron types and functional groups to degeneration in amyotrophic lateral sclerosis: review of the neurobiological mechanisms and functional correlates. Brain Struct Funct. 2024;229:1–14. PubMed DOI

Tzeplaeff L, Wilfling S, Requardt MV, Herdick M. Current state and future directions in the therapy of ALS. Cells. 2023;12:1523. PubMed DOI PMC

Morgan S, Orrell RW. Pathogenesis of amyotrophic lateral sclerosis. Br Med Bull. 2016;119:87–97. PubMed DOI

Brown RH, Al-Chalabi A. Amyotrophic lateral sclerosis. N Engl J Med. 2017;377:162–72. PubMed DOI

Shusharina N, Yukhnenko D, Botman S, Sapunov V, Savinov V, Kamyshov G, Sayapin D, Voznyuk I. Modern methods of diagnostics and treatment of neurodegenerative diseases and depression. Diagnostics. 2023;13:573. PubMed DOI PMC

Priyadarshini S, Ajroud-Driss S. Update on ALS treatment. Curr Treat Options Neurol. 2023;25:199–212. DOI

Corcia P, Guy N, Pradat P-F, Soriani M-H, Verschueren A, Couratier P. Treatment continuity of amyotrophic lateral sclerosis with available riluzole formulations: state of the art and current challenges in a ‘real-world’ setting. Amyotrophic Lateral Scler Frontotemporal Degener. 2025;26:15–21. DOI

Colovic MB, Krstic DZ, Lazarevic-Pasti TD, Bondzic AM, Vasic VM. Acetylcholinesterase inhibitors: pharmacology and toxicology. Curr Neuropharmacol. 2013;11:315–35. PubMed DOI PMC

Oliveira C, Bagetta D, Cagide F, Teixeira J, Amorim R, Silva T, Garrido J, Remião F, Uriarte E, Oliveira PJ. Benzoic acid-derived nitrones: a new class of potential acetylcholinesterase inhibitors and neuroprotective agents. Eur J Med Chem. 2019;174:116–29. PubMed DOI

Grossberg GT. Cholinesterase inhibitors for the treatment of Alzheimer’s disease: getting on and staying on. Curr Ther Res. 2003;64:216–35. PubMed DOI PMC

Mehta M, Adem A, Sabbagh M. New acetylcholinesterase inhibitors for Alzheimer’s disease. Int J Alzheimer’s Dis. 2012;2012: 728983.

Bom A, Hope F, Rutherford S, Thomson K. Preclinical pharmacology of sugammadex. J Crit Care. 2009;24:29–35. PubMed DOI

Caldwell JE. Clinical limitations of acetylcholinesterase antagonists. J Crit Care. 2009;24:21–8. PubMed DOI

Jewett BE, Thapa B. Physiology, NMDA receptor. In: StatPearls [Internet]. Treasure Island, FL: StatPearls Publishing; 2022. https://www.ncbi.nlm.nih.gov/books/NBK519495/ .

Jorratt P, Ricny J, Leibold C, Ovsepian SV. Endogenous modulators of NMDA receptor control dendritic field expansion of cortical neurons. Mol Neurobiol. 2023;60:1440–52. PubMed DOI

Moore TJ, Alami A, Alexander GC, Mattison DR. Safety and effectiveness of NMDA receptor antagonists for depression: a multidisciplinary review. Pharmacotherapy. 2022;42:567–79. PubMed DOI PMC

Egunlusi AO, Joubert J. NMDA receptor antagonists: emerging insights into molecular mechanisms and clinical applications in neurological disorders. Pharmaceuticals. 2024;17:639. PubMed DOI PMC

Lipton SA. Paradigm shift in NMDA receptor antagonist drug development: molecular mechanism of uncompetitive inhibition by memantine in the treatment of Alzheimer’s disease and other neurologic disorders. J Alzheimers Dis. 2005;6:S61–74. DOI

Rafe MR, Saha P, Bello ST. Targeting NMDA receptors with an antagonist is a promising therapeutic strategy for treating neurological disorders. Behav Brain Res. 2024;472: 115173. PubMed DOI

Aiyer R, Mehta N, Gungor S, Gulati AA. Systematic review of NMDA receptor antagonists for treatment of neuropathic pain in clinical practice. Clin J Pain. 2018;34:450–67. PubMed DOI

Jorratt P, Hoschl C, Ovsepian SV. Endogenous antagonists of N-methyl-D-aspartate receptor in schizophrenia. Alzheimer’s Dementia. 2021;17:888–905. DOI

Dhawan A, Choudhary S, Gupta S, Chander A, Dhanawat M. Auvelity: a new era in medicine-unraveling the multifaceted benefits of dextromethorphan/bupropion combination. Curr Drug Ther. 2024;19:628–37. DOI

Chaturvedi C, Singh A. Suppression of annual testicular development in Indian palm squirrel, Funambulus pennanti by 8 hr temporal relationship of serotonin and dopamine precursor drugs. J Neural Transm. 1992;88:53–60. DOI

Franco R, Reyes-Resina I, Navarro G. Dopamine in health and disease: much more than a neurotransmitter. Biomedicines. 2021;9:109. PubMed DOI PMC

Bogetofte H, Alamyar A, Blaabjerg M, Meyer M. Levodopa therapy for Parkinson’s disease: history, current status and perspectives. CNS Neurol Disord Drug Targets. 2020;19:572–83. PubMed DOI

Vaswani PA, Wilkinson JR. (2024) Parkinson’s disease and other movement disorders. In: Tipirneni KE, Nicholas BD, editors. Geriatric medicine: a person centered evidence based approach. Springer; 2024. p. 1073–96. DOI

Cristancho AG, Marsh ED. Epigenetics modifiers: potential hub for understanding and treating neurodevelopmental disorders from hypoxic injury. J Neurodev Disord. 2020;12:1–12. DOI

Maes T, Mascaró C, Rotllant D, Lufino MMP, Estiarte A, Guibourt N, Cavalcanti F, Griñan-Ferré C, Pallàs M, Nadal R. Modulation of KDM1A with vafidemstat rescues memory deficit and behavioral alterations. PLoS ONE. 2020;15: e0233468. PubMed DOI PMC

Teijido O, Cacabelos R. Pharmacoepigenomic interventions as novel potential treatments for Alzheimer’s and Parkinson’s diseases. Int J Mol Sci. 2018;19:3199. PubMed DOI PMC

Aliperti V, Skonieczna J, Cerase A. Long non-coding RNA (lncrna) roles in cell biology, neurodevelopment and neurological disorders. Non-Coding RNA. 2021;7:36. PubMed DOI PMC

Kwon MJ, Kim S, Han MH, Lee SB. Epigenetic changes in neurodegenerative diseases. Mol Cells. 2016;39:783–9. PubMed DOI PMC

Wen K-x, Milic J, El-Khodor B, Dhana K, Nano J, Pulido T, Kraja B, Zaciragic A, Bramer WM, Troup J. The role of DNA methylation and histone modifications in neurodegenerative diseases: a systematic review. PLoS ONE. 2016;11: e0167201. PubMed DOI PMC

Schaevitz L, Berger-Sweeney J, Ricceri L. One-carbon metabolism in neurodevelopmental disorders: using broad-based nutraceutics to treat cognitive deficits in complex spectrum disorders. Neurosci Biobehav Rev. 2014;46:270–84. PubMed DOI

Kalecký K, Ashcraft P, Bottiglieri T. One-carbon metabolism in Alzheimer’s disease and Parkinson’s disease brain tissue. Nutrients. 2022;14:599. PubMed DOI PMC

Dayon L, Guiraud SP, Corthésy J, Da Silva L, Migliavacca E, Tautvydaitė D, Oikonomidi A, Moullet B, Henry H, Métairon S. One-carbon metabolism, cognitive impairment and CSF measures of Alzheimer pathology: homocysteine and beyond. Alzheimers Res Ther. 2017;9(1):1–11. DOI

Mukherjee A, Biswas S, Roy I. Immunotherapy: an emerging treatment option for neurodegenerative diseases. Drug Discov Today. 2024. https://doi.org/10.1016/j.drudis.2024.103974 . PubMed DOI

Sun J, Roy S. Gene-based therapies for neurodegenerative diseases. Nat Neurosci. 2021;24:297–311. PubMed DOI PMC

Lasheen NN, Allam S, Elgarawany A, Aswa DW, Mansour R, Farouk Z. Limitations and potential strategies of immune checkpoint blockade in age-related neurodegenerative disorders. J Physiol Sci. 2024;74:46. PubMed DOI PMC

García-González N, Gonçalves-Sánchez J, Gómez-Nieto R, Gonçalves-Estella JM, López DE. Advances and challenges in gene therapy for neurodegenerative diseases: a systematic review. Int J Mol Sci. 2024;25:12485. PubMed DOI PMC

Sushma N, Mondal AC. Immunotherapeutic approaches for the treatment of neurodegenerative diseases: challenges and outcomes. CNS Neurol Disord Drug Targets. 2023;22:404–16. PubMed DOI

Kakoti BB, Bezbaruah R, Ahmed N. Therapeutic drug repositioning with special emphasis on neurodegenerative diseases: threats and issues. Front Pharmacol. 2022;13:1007315. PubMed DOI PMC

Tripathi MK, Bhardwaj B, Waiker DK, Tripathi A, Shrivastava SK. Discovery of novel dual acetylcholinesterase and butyrylcholinesterase inhibitors using machine learning and structure-based drug design. J Mol Struct. 2023;1286: 135517. DOI

Schultz KJ, Colby SM, Yesiltepe Y, Nuñez JR, McGrady MY, Renslow RS. Application and assessment of deep learning for the generation of potential NMDA receptor antagonists. Phys Chem Chem Phys. 2021;23:1197–214. PubMed DOI

He J, Wu L, Du W, Zhang F, Lin S, Ling Y, Ren K, Chen Z, Chen H, Su W. Instrumented timed up and go test and machine learning-based levodopa response evaluation: a pilot study. J Neuroeng Rehabil. 2024;21: 163. PubMed DOI PMC

Suganthy N, Sri Ramkumar V, Pugazhendhi A, Benelli G, Archunan G. Biogenic synthesis of gold nanoparticles from Terminalia arjuna bark extract: assessment of safety aspects and neuroprotective potential via antioxidant, anticholinesterase, and antiamyloidogenic effects. Environ Sci Pollut Res. 2018;25:10418–33. DOI

Abdelkader NF, El-Batal AI, Amin YM, Hawas AM, Hassan SH, Eid NI. Neuroprotective effect of gold nanoparticles and alpha-lipoic acid mixture against radiation-induced brain damage in rats. Int J Mol Sci. 2022;23: 9640. PubMed DOI PMC

Zhang J, Liu R, Zhang D, Zhang Z, Zhu J, Xu L, Guo Y. Neuroprotective effects of maize tetrapeptide-anchored gold nanoparticles in Alzheimer’s disease. Colloids Surf B. 2021;200: 111584. DOI

Nkentsha Z, Rambharose S. Green-synthesized gold nanoparticles exhibit neuroprotective activity against oxidative stress-induced damage in SH-SY5Y cells. J Nanopart Res. 2025;27: 197. DOI

Zhang Y, Feng S, Wang P. Neuroprotective properties of plant extract green-formulated silver nanoparticles on the contusive model of spinal cord injury in rats. Inorg Chem Commun. 2024;163: 112265. DOI

Khorrami S, Dogani M, Mahani SE, Moghaddam MM, Taheri RA. Neuroprotective activity of green synthesized silver nanoparticles against methamphetamine-induced cell death in human neuroblastoma SH-SY5Y cells. Sci Rep. 2023;13: 11867. PubMed DOI PMC

Mokhnache M, Hani B, Koca FD, Ünal G, Nasrat AR, Basma A, Bozkurt NM, Bachir AAM, Harzallah D. Evaluation of antimicrobial, anticancer and neuroprotective activities of silver nanoparticles (AgNPs) green-synthesized using a red pigment produced by Streptomyces sp. A23 strain isolated from Algerian bee pollen. J Serb Chem Soc. 2025;90:561–78. DOI

Albrakati A, Alsharif KF, Al Omairi NE, Alsanie WF, Almalki AS, Abd Elmageed ZY, Elshopakey GE, Lokman MS, Bauomy AA, Abdel Moneim AE. Neuroprotective efficiency of prodigiosins conjugated with selenium nanoparticles in rats exposed to chronic unpredictable mild stress is mediated through antioxidative, anti-inflammatory, anti-apoptotic, and neuromodulatory activities. Int J Nanomed. 2021. https://doi.org/10.2147/IJN.S323436 . DOI

Yan W, Liu Y, Mansooridara S, Kalantari AS, Sadeghian N, Taslimi P, Zangeneh A, Zangeneh MM. Chemical characterization and neuroprotective properties of copper nanoparticles green-synthesized by Nigella sativa L. seed aqueous extract against methadone-induced cell death in adrenal phaeochromocytoma (PC12) cell line. J Exp Nanosci. 2020;15:280–96. DOI

Ullah I, Neder RB, Ahmad M, Khan AQ, Rauf A, Alshammari A, Albekairi NA. Antimicrobial activities and neuroprotective potential for Alzheimer’s disease of pure, Mn Co, and Al-doped ZnO ultra-small nanoparticles. Green Process Synth. 2024;13: 20240096. DOI

Meenambal R, Kruk T, Jakubowska K, Gurgul J, Szczepanowicz K, Szczęch M, Szyk-Warszyńska L, Warszyński P, Jantas D. Influence of Eu3+ doping on physiochemical properties and neuroprotective potential of polyacrylic acid functionalized cerium oxide nanoparticles. Int J Mol Sci. 2024;25: 2501. PubMed DOI PMC

Hu Y, Guo H, Cheng S, Sun J, Du J, Liu X, Xiong Y, Chen L, Liu C, Wu C. Functionalized cerium dioxide nanoparticles with antioxidative neuroprotection for Alzheimer’s disease. Int J Nanomed. 2023. https://doi.org/10.2147/IJN.S434873 . DOI

Khadrawy YA, Hosny EN, Mohamed HSE. Assessment of the neuroprotective effect of green synthesized iron oxide nanoparticles capped with curcumin against a rat model of Parkinson’s disease. Iran J Basic Med Sci. 2024;27:81. PubMed PMC

Li L, Luo P, Wu S, Wang Y. Deciphering the neuroprotective effect of ascorbic acid mediated synthesis of iron oxide nanoparticles against Parkinson’s disease: an in vitro and in vivo approach. Macromol Res. 2023;31:949–60. DOI

Khafajah Y, Shaheen M, El Natour D, Merheb M, Matar R, Borjac J. Neuroprotective effects of zinc oxide nanoparticles in a rotenone-induced mouse model of Parkinson’s disease. Nanotheranostics. 2024;8:497. PubMed DOI PMC

Mamatha MG, Ansari MA, Begum MY, Prasad BD, Al Fatease A, Hani U, Alomary MN, Sultana S, Punekar SM, Mb N. Green synthesis of cerium oxide nanoparticles, characterization, and their neuroprotective effect on hydrogen peroxide-induced oxidative injury in human neuroblastoma (SH-SY5Y) cell line. ACS Omega. 2024;9:2639–49. PubMed DOI PMC

Beedkar-Pawase A, Raut SV, Kulkarni GR. Neuroprotective effect of magnesium oxide nanoparticles on SH-SY-5Y cell line. BioNanoScience. 2022;12:1238–50. DOI

Mohamed HR, Farouk AH, Elbasiouni SH, Nasif KA, Safwat G. Yttrium oxide nanoparticles ameliorates calcium hydroxide and calcium titanate nanoparticles induced genomic DNA and mitochondrial damage, ROS generation and inflammation. Sci Rep. 2024;14: 13015. PubMed DOI PMC

Cui C, Shen D, Zuo D, Ye X. Neuroprotective effects of sonochemical-synthesized SiO2 nanoparticles in vivo models of ischemic/reperfusion injury in stroke. Arab J Chem. 2021;14: 103416. DOI

Oukhrib M, Tamegart L, Assafi A, Hejji L, Azzouz A, Villarejo LP, Haida M, Mohamed C, Gamrani H. Effects of graphene oxide nanoparticles administration against reserpine-induced neurobehavioral damage and oxidative stress in an animal model of Parkinson’s disease. Food Chem Toxicol. 2023;178: 113904. PubMed DOI

Ding S, Bao Y, Lin Y, Pan Y, Fan Y, Wan J, Jiang J. Neuroprotective effect of functionalized multi-walled carbon nanotubes on spinal cord injury in rats. Int J Clin Exp Pathol. 2015;8:15769. PubMed PMC

Mosalam EM, Abdel-Bar HM, Elberri AI, Abdallah MS, Zidan A-AA, Batakoushy HA, Mansour HEA. Enhanced neuroprotective effect of verapamil-loaded hyaluronic acid modified carbon quantum dots in an in-vitro model of amyloid-induced Alzheimer’s disease. Int J Biol Macromol. 2024;275: 133742. PubMed DOI

Maghimaa M, Bharath S, Kandasamy S. Carbon-based nanoparticles for neural regeneration. In: Sivamaruthi BS, Sisubalan N, Kesika P, Varaprasad K, editors. Nanoparticles in modern neurological treatment. Springer; 2025. p. 263–82. DOI

Lin D, Li M, Gao Y, Yin L, Guan Y. Brain-targeted gene delivery of ZnO quantum dots nanoplatform for the treatment of Parkinson disease. Chem Eng J. 2022;429: 132210. DOI

Guo X, Lie Q, Liu Y, Jia Z, Gong Y, Yuan X, Liu J. Multifunctional selenium quantum dots for the treatment of Alzheimer’s disease by reducing Aβ-neurotoxicity and oxidative stress and alleviate neuroinflammation. ACS Appl Mater Interfaces. 2021;13:30261–73. PubMed DOI

Traverso AN, Fragale DJ, Viale DL, Garate O, Torres P, Valverde G, Berra A, Torbidoni AV, Yakisich JS, Grasselli M. Two-step preparation of protein-decorated biohybrid quantum dot nanoparticles for cellular uptake. Pharmaceutics. 2023;15:1651. PubMed DOI PMC

Jia G, Yang X, Yu Y, Li Y, Zhang Z, Tang X, Wang Q, Zheng H, Xiao Y, Li S. Quercetin carbon quantum dots: dual-target therapy for intracerebral hemorrhage in mice. Mol Brain. 2025;18:17. PubMed DOI PMC

Xu Z-R, Wang W-F, Liang X-F, Liu Z-H, Liu Y, Lin L, Zhu X. Protective effects of poly (butyl) cyanoacrylate nanoparticles containing vasoactive intestinal peptide against 6-hydroxydopamine-induced neurotoxicity in vitro. J Mol Neurosci. 2015;55:854–64. PubMed DOI

Liu Z, Gao X, Kang T, Jiang M, Miao D, Gu G, Hu Q, Song Q, Yao L, Tu Y. B6 peptide-modified PEG-PLA nanoparticles for enhanced brain delivery of neuroprotective peptide. Bioconjug Chem. 2013;24:997–1007. PubMed DOI

Shao X, Ma W, Xie X, Li Q, Lin S, Zhang T, Lin Y. Neuroprotective effect of tetrahedral DNA nanostructures in a cell model of Alzheimer’s disease. ACS Appl Mater Interfaces. 2018;10:23682–92. PubMed DOI

Yurek D, Hasselrot U, Sesenoglu-Laird O, Padegimas L, Cooper M. Intracerebral injections of DNA nanoparticles encoding for a therapeutic gene provide partial neuroprotection in an animal model of neurodegeneration. Nanomedicine. 2017;13:2209–17. PubMed DOI

Aly AE-E, Harmon BT, Padegimas L, Sesenoglu-Laird O, Cooper MJ, Waszczak BL. Intranasal delivery of pGDNF DNA nanoparticles provides neuroprotection in the rat 6-hydroxydopamine model of Parkinson’s disease. Mol Neurobiol. 2019;56:688–701. PubMed DOI

Vaswani P, Kosra S, Kansara K, Kumar A, Bhatia D. Neurotransmitter-loaded DNA nanocages as potential therapeutics for α-synuclein-based neuropathies in cells and in vivo. ACS Chem Neurosci. 2025. https://doi.org/10.1021/acschemneuro.5c00203 . PubMed DOI

Koca FD, Halici MG, Işik Y, Ünal G. Green synthesis of Ag-ZnO nanocomposites by using Usnea florida and Pseudevernia furfuracea lichen extracts and evaluation of their neurotoxic effects. Inorg Nano-Met Chem. 2024;54:818–25. DOI

Yang Y, Deng G, Wang P, Lv G, Mao R, Sun Y, Wang B, Liu X, Bian L, Zhou D. A selenium nanocomposite protects the mouse brain from oxidative injury following intracerebral hemorrhage. Int J Nanomed. 2021. https://doi.org/10.2147/IJN.S293681 . DOI

Rajkumar M, Davis Presley S, Thiyagarajulu N, Girigoswami K, Janani G, Kamaraj C, Madheswaran B, Prajapati B, Ali N, Khan MR. Gelatin/PLA-loaded gold nanocomposites synthesis using Syzygium cumini fruit extract and their antioxidant, antibacterial, anti-inflammatory, antidiabetic and anti-Alzheimer’s activities. Sci Rep. 2025;15:2110. PubMed DOI PMC

Affrald J, Narayan S. Gold/4-aminopyridine mucoadhesive chitosan nanocomposites as promising nasal drug delivery system for neuroprotection—an ex vivo investigation. Emerg Mater. 2024;7:2661–85. DOI

Sun D, Liu K, Li Y, Xie T, Zhang M, Liu Y, Tong H, Guo Y, Zhang Q, Liu H. Intrinsically bioactive manganese–eumelanin nanocomposites mediated antioxidation and anti-neuroinflammation for targeted theranostics of traumatic brain injury. Adv Healthc Mater. 2022;11:2200517. DOI

Aljohani NB, Qusti SY, Alsiny M, Aljoud F, Aljohani NB, Alsolami ES, Alamry KA, Hussein MA. Carboxymethylcellulose encapsulated fingolimod, siRNA@ZnO hybrid nanocomposite as a new anti-Alzheimer’s material. RSC Adv. 2024;14:22044–55. PubMed DOI PMC

El-Nashar HA, Abbas H, Zewail M, Noureldin MH, Ali MM, Shamaa MM, Khattab MA, Ibrahim N. Neuroprotective effect of artichoke-based nanoformulation in sporadic Alzheimer’s disease mouse model: focus on antioxidant, anti-inflammatory, and amyloidogenic pathways. Pharmaceuticals. 2022;15:1202. PubMed DOI PMC

Rajamanickam G, Manju SL. Neuroprotective effects of chitosan nanoparticles loaded with niruriflavone in an aluminium chloride-induced Alzheimer’s disease rat model. J Toxicol Environ Health Sci. 2024;16:181–90. DOI

Gorinova C, Aluani D, Yordanov Y, Kondeva-Burdina M, Tzankova V, Popova C, Yoncheva K. In vitro evaluation of antioxidant and neuroprotective effects of curcumin loaded in Pluronic micelles. Biotechnol Biotechnol Equip. 2016;30:991–7. DOI

Rompicherla SKL, Arumugam K, Bojja SL, Kumar N, Rao CM. Pharmacokinetic and pharmacodynamic evaluation of nasal liposome and nanoparticle based rivastigmine formulations in acute and chronic models of Alzheimer’s disease. Naunyn-Schmiedebergs Arch Pharmacol. 2021;394:1737–55. PubMed DOI PMC

Srivastava R, Choudhury PK, Dev SK, Rathore V. Neuroprotective effect of α-pinene self-emulsifying nanoformulation against 6-OHDA induced neurotoxicity on human SH-SY5Y cells and its in vivo validation for anti-Parkinson’s effect. J Biochem Mol Toxicol. 2021;35: e22902. PubMed DOI

Zhang L, Zhan M, Sun H, Zou Y, Laurent R, Mignani S, Majoral J-P, Cao X, Shen M, Shi X. Mesenchymal stem-cell-derived exosomes loaded with phosphorus dendrimers and quercetin treat Parkinson’s disease by modulating inflammatory immune microenvironment. ACS Appl Mater Interfaces. 2025;17:32013–27. PubMed DOI

Bogadi S, Bhaskaran M, Ravichandran V, Nesamony J, Chelliah S, Kuppusamy G, Prakash GM, Karri VVSR, Mallick S, Farahim F. Functionalized nanoparticles: a promising approach for effective management of Alzheimer’s disease. Mol Neurobiol. 2025. https://doi.org/10.1007/s12035-025-04917-2 . PubMed DOI

Gong J-Y, Holt MG, Hoet PH, Ghosh M. Neurotoxicity of four frequently used nanoparticles: a systematic review to reveal the missing data. Arch Toxicol. 2022;96:1141–212. PubMed DOI

Zhao Y, Yang Q, Liu D, Liu T, Xing L. Neurotoxicity of nanoparticles: insight from studies in zebrafish. Ecotoxicol Environ Saf. 2022;242: 113896. PubMed DOI

Jeevanandam J, San Chan Y, Danquah MK. Zebrafish as a model organism to study nanomaterial toxicity. Emerg Sci J. 2019;3:195–208. DOI

Shalaby OE, Ahmed YH, Mekkawy AM, Mahmoud MY, Khalil HM, Elbargeesy G. Assessment of the neuroprotective effect of selenium-loaded chitosan nanoparticles against silver nanoparticles-induced toxicity in rats. Neurotoxicology. 2023;95:232–43. PubMed DOI

Ahmed MM, Hussein MM. Neurotoxic effects of silver nanoparticles and the protective role of rutin. Biomed Pharmacother. 2017;90:731–9. PubMed DOI

Wu T, He K, Zhan Q, Ang S, Ying J, Zhang S, Zhang T, Xue Y, Chen Y, Tang M. Partial protection of N-acetylcysteine against MPA-capped CdTe quantum dot-induced neurotoxicity in rat primary cultured hippocampal neurons. Toxicol Res. 2015;4:1613–22. DOI

Teixeira MI, Lopes CM, Amaral MH, Costa PC. Navigating neurotoxicity and safety assessment of nanocarriers for brain delivery: evaluation models and insights. Acta Biomater. 2024;189:25–56. PubMed DOI

Wei W, Yan Z, Liu X, Qin Z, Tao X, Zhu X, Song E, Chen C, Ke PC, Leong DT. Brain accumulation and toxicity profiles of silica nanoparticles: the influence of size and exposure route. Environ Sci Technol. 2022;56:8319–25. PubMed DOI

Zia S, Islam Aqib A, Muneer A, Fatima M, Atta K, Kausar T, Zaheer C-NF, Ahmad I, Saeed M, Shafique A. Insights into nanoparticles-induced neurotoxicity and cope up strategies. Front Neurosci. 2023;17:1127460. PubMed DOI PMC

Li B, Zhang T, Tang M. Toxicity mechanism of nanomaterials: focus on endoplasmic reticulum stress. Sci Total Environ. 2022;834: 155417. PubMed DOI

Aschner M, Skalny A, Santamaria A, Buha-Đorđević A, Tizabi Y, Jiang Y, Lu R, Virgolini MB, Tinkov AA. From mechanisms to implications: understanding the molecular neurotoxicity of titanium dioxide nanoparticles. Front Biosci-Landmark. 2023;28:1–21. DOI

Filippov SK, Khusnutdinov R, Murmiliuk A, Inam W, Zakharova LY, Zhang H, Khutoryanskiy VV. Dynamic light scattering and transmission electron microscopy in drug delivery: a roadmap for correct characterization of nanoparticles and interpretation of results. Mater Horiz. 2023;10:5354–70. PubMed DOI

Malatesta M. Transmission electron microscopy as a powerful tool to investigate the interaction of nanoparticles with subcellular structures. Int J Mol Sci. 2021;22: 12789. PubMed DOI PMC

Prasad RD, Prasad NR, Prasad N, Prasad SR, Prasad RS, Prasad RB, Prasad RR, Prasad RG, Desai C, Vaidya AK. A review on scattering techniques for analysis of nanomaterials and biomaterials. Eng Sci. 2024;33:1332.

Burastero O, Draper-Barr G, Raynal B, Chevreuil M, England P, Garcia Alai M. Raynals, an online tool for the analysis of dynamic light scattering. Acta Crystallogr Sect D Struct Biol. 2023;79:673–83. DOI

Salazar M, Srivastav H, Srivastava A, Srivastava S. A user-friendly graphical user interface for dynamic light scattering data analysis. Soft Matter. 2023;19:6535–44. PubMed DOI

Inkson BJ. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for materials characterization, in Materials characterization using nondestructive evaluation (NDE) methods. Elsevier; 2016. p. 17–43.

Soni U, Desai RP. Analyzing magnetic nanofluid structure. Phys Fluids. 2022. https://doi.org/10.1063/5.0077322 . DOI

Ing G, Stewart A, Battaglia G, Ruiz-Perez L. Simplipytem: an open-source Python library and app to simplify transmission electron microscopy and in situ-TEM image analysis. PLoS ONE. 2023;18: e0285691. PubMed DOI PMC

Day AL, Wahl CB, Dos Reis R, Liao W-K, Dravid VP, Choudhary A, Agrawal A (2024). Automated nanoparticle image processing pipeline for AI-driven materials characterization. In: Proceedings of the 33rd ACM international conference on information and knowledge management; 2024. p. 4462–9.

Larner SF, Wang J, Goodman J, O’Donoghue Altman MB, Xin M, Wang KK. In vitro neurotoxicity resulting from exposure of cultured neural cells to several types of nanoparticles. J Cell Death. 2017;10: 1179670717694523. PubMed DOI PMC

Singh AV, Varma M, Laux P, Choudhary S, Datusalia AK, Gupta N, Luch A, Gandhi A, Kulkarni P, Nath B. Artificial intelligence and machine learning disciplines with the potential to improve the nanotoxicology and nanomedicine fields: a comprehensive review. Arch Toxicol. 2023;97:963–79. PubMed DOI PMC

Desai AS, Bandopadhyaya A, Ashok A, Bhagat N. Decoding characteristics of key physical properties in silver nanoparticles by attaining centroids for cytotoxicity prediction through data cleansing. Mach Learn Sci Technol. 2024;5: 025059. DOI

Papadiamantis AG, Jänes J, Voyiatzis E, Sikk L, Burk J, Burk P, Tsoumanis A, Ha MK, Yoon TH, Valsami-Jones E. Predicting cytotoxicity of metal oxide nanoparticles using Isalos analytics platform. Nanomaterials. 2020;10:2017. PubMed DOI PMC

Helmbrecht H, Xu N, Liao R, Nance E. Data management schema design for effective nanoparticle formulation for neurotherapeutics. AIChE J. 2021;67: e17459. PubMed DOI PMC

Shirokii N, Din Y, Petrov I, Seregin Y, Sirotenko S, Razlivina J, Serov N, Vinogradov V. Quantitative prediction of inorganic nanomaterial cellular toxicity via machine learning. Small. 2023;19: 2207106. DOI

Kumar S, Singh SK, Gupta Y, Bajpai V, Tiwari P. Brain tumour MRI image segmentation and classification using FCNN. In: soft computing for security applications: Proceedings of ICSCS 2021. Springer; 2022. p. 323–9.

Berks M, Parker G, Little R, Cheung S. Madym: a C++ toolkit for quantitative dce-MRI analysis. J Open Source Softw. 2021. https://doi.org/10.21105/joss.03523 . DOI

Agarwal M, Georgiadis J, Pelegri AA. Data-driven depiction of aging related physiological volume shrinkage in brain white matter: an image processing based three-dimensional micromechanical model. J Eng Sci Med Diagn Ther. 2025. https://doi.org/10.1115/1.4067393 . DOI

Zanovello U, Seifert F, Bottauscio O, Winter L, Zilberti L, Ittermann B. CoSimPy: an open-source python library for MRI radiofrequency coil EM/circuit cosimulation. Comput Methods Progr Biomed. 2022;216: 106684. DOI

Zhuang M, Chen Z, Wang H, Tang H, He J, Qin B, Yang Y, Jin X, Yu M, Jin B. Anatomysketch: an extensible open-source software platform for medical image analysis algorithm development. J Digit Imaging. 2022;35:1623–33. PubMed DOI PMC

Agarwal SK, Gupta YK. A study of tools, techniques and language for the implementation of algorithm for brain tumor detection. In: AIP conference Proceedings, vol 296. AIP Publishing; 2023.

Saifullah S, Dreżewski R, Yudhana A. Advanced brain tumor segmentation using DeepLabV3Plus with Xception encoder on a multi-class MR image dataset. Multimed Tools Appl. 2025:1–22.

Jiao J, Heeman F, Dixon R, Wimberley C, Lopes Alves I, Gispert JD, Lammertsma AA, van Berckel BN, da Costa-Luis C, Markiewicz P. NiftyPAD-novel Python package for quantitative analysis of dynamic PET data. Neuroinformatics. 2023;21:457–68. PubMed DOI PMC

Mureddu M, Funck T, Morana G, Rossi A, Ramaglia A, Milanaccio C, Verrico A, Bottoni G, Fiz F, Piccardo AA. New tool for extracting static and dynamic parameters from [ PubMed DOI PMC

Perlo D, Kanli G, Boudissa S, Keunen O. Multi-parametric MRI to FMISO PET synthesis for hypoxia prediction in brain tumors. In: Mukhopadhyay A, Oksuz I, Engelhardt S, Mehrof D, Yuan Y, editors. MICCAI workshop on deep generative models. Springer; 2024. p. 119–28.

Jesuraj A. Enhancing image segmentation process in human organs using Python. Int J Emerg Trends Comput Sci Inf Technol. 2024;5:1–12.

Hssayeni M, Croock M, Salman A, Al-khafaji H, Yahya Z, Ghoraani B. Computed tomography images for intracranial hemorrhage detection and segmentation. Intracranial hemorrhage segmentation using a deep convolutional model. Data. 2020;5:14. DOI

Wang Y, Wang H, Shen K, Chang J, Cui J. Brain CT image segmentation based on 3D slicer. J Complex Health Sci. 2020;3:34–42. DOI

Chatterjee I, Moradikor N. Integrating neuroimaging, computational neuroscience, and artificial intelligence. Boca Raton: CRC Press; 2024. DOI

Umbaugh SE. Digital image processing and analysis: computer vision and image analysis. Boca Raton: CRC Press; 2023.

Nichols JA, Herbert Chan HW, Baker MA. Machine learning: applications of artificial intelligence to imaging and diagnosis. Biophys Rev. 2019;11:111–8. PubMed DOI

Archana R, Jeevaraj PE. Deep learning models for digital image processing: a review. Artif Intell Rev. 2024;57:11. DOI

Valente J, António J, Mora C, Jardim S. Developments in image processing using deep learning and reinforcement learning. J Imaging. 2023;9:207. PubMed DOI PMC

Tchito Tchapga C, Mih TA, Tchagna Kouanou A, Fozin Fonzin T, Kuetche Fogang P, Mezatio BA, Tchiotsop D. Biomedical image classification in a big data architecture using machine learning algorithms. J Healthc Eng. 2021;2021: 2021: 9998819. PubMed DOI PMC

Naeem S, Ali A, Anam S, Ahmed MM. An unsupervised machine learning algorithms: comprehensive review. Int J Comput Digit Syst. 2023. https://doi.org/10.12785/ijcds/130172 . DOI

Li X, Li C, Rahaman MM, Sun H, Li X, Wu J, Yao Y, Grzegorzek M. A comprehensive review of computer-aided whole-slide image analysis: from datasets to feature extraction, segmentation, classification and detection approaches. Artif Intell Rev. 2022;55:4809–78. DOI

Sun Z, Shi J, Wang J, Jiang M, Wang Z, Bai X, Wang X. A deep learning-based framework for automatic analysis of the nanoparticle morphology in SEM/TEM images. Nanoscale. 2022;14:10761–72. PubMed DOI

Bals J, Epple M. Deep learning for automated size and shape analysis of nanoparticles in scanning electron microscopy. RSC Adv. 2023;13:2795–802. PubMed DOI PMC

Furxhi I, Murphy F. Predicting in vitro neurotoxicity induced by nanoparticles using machine learning. Int J Mol Sci. 2020;21: 5280. PubMed DOI PMC

Bilgi E, Karakus CO. Machine learning-assisted prediction of the toxicity of silver nanoparticles: a meta-analysis. J Nanopart Res. 2023;25:157. DOI

Yu H, Zhao Z, Cheng F. Predicting and investigating cytotoxicity of nanoparticles by translucent machine learning. Chemosphere. 2021;276: 130164. PubMed DOI

Conti A, Campagnolo L, Diciotti S, Pietroiusti A, Toschi N. Predicting the cytotoxicity of nanomaterials through explainable, extreme gradient boosting. Nanotoxicology. 2022;16:844–56. PubMed DOI

Banerjee A, Kar S, Pore S, Roy K. Efficient predictions of cytotoxicity of TiO2-based multi-component nanoparticles using a machine learning-based q-RASAR approach. Nanotoxicology. 2023;17:78–93. PubMed DOI

Luo H, Zhang T, Gong N-J, Tamir J, Venkata SP, Xu C, Duan Y, Zhou T, Zhou F, Zaharchuk G. Deep learning–based methods may minimize GBCA dosage in brain MRI. Eur Radiol. 2021;31:6419–28. PubMed DOI

Mudali D, Jeevanandam J, Danquah MK. Probing the characteristics and biofunctional effects of disease-affected cells and drug response via machine learning applications. Crit Rev Biotechnol. 2020;40:951–77. PubMed DOI

Chattopadhyay A, Maitra M. MRI-based brain tumour image detection using CNN based deep learning method. Neurosci Inform. 2022;2: 100060. DOI

Shu ZY, Cui SJ, Wu X, Xu Y, Huang P, Pang PP, Zhang M. Predicting the progression of Parkinson’s disease using conventional MRI and machine learning: an application of radiomic biomarkers in whole-brain white matter. Magn Reson Med. 2021;85:1611–24. PubMed DOI

Stéen EJL, Vugts DJ, Windhorst AD. The application of in silico methods for prediction of blood-brain barrier permeability of small molecule PET tracers. Front Nucl Med. 2022;2: 853475. PubMed DOI PMC

Sanaat A, Shiri I, Arabi H, Mainta I, Nkoulou R, Zaidi H. Deep learning-assisted ultra-fast/low-dose whole-body PET/CT imaging. Eur J Nucl Med Mol Imaging. 2021;48:2405–15. PubMed DOI PMC

Pease M, Arefan D, Barber J, Yuh E, Puccio A, Hochberger K, Nwachuku E, Roy S, Casillo S, Temkin N. Outcome prediction in patients with severe traumatic brain injury using deep learning from head CT scans. Radiology. 2022;304:385–94. PubMed DOI

Duan L, Li X, Ji R, Hao Z, Kong M, Wen X, Guan F, Ma S. Nanoparticle-based drug delivery systems: an inspiring therapeutic strategy for neurodegenerative diseases. Polymers. 2023;15: 2196. PubMed DOI PMC

Vissers C, Ming G-l, Song H. Nanoparticle technology and stem cell therapy team up against neurodegenerative disorders. Adv Drug Deliv Rev. 2019;148:239–51. PubMed DOI PMC

Wahengbam GS, Nirmal S, Nandwana J, Kar S, Kumari V, Mishra R, Singh A. Polymeric nanoparticles revolutionizing brain cancer therapy: a comprehensive review of strategies and advances. Crit Rev Ther Drug Carrier Syst. 2025. https://doi.org/10.1615/CritRevTherDrugCarrierSyst.2024051822 . PubMed DOI

Dhariwal R, Jain M, Mir YR, Singh A, Jain B, Kumar P, Tariq M, Verma D, Deshmukh K, Yadav VK. Targeted drug delivery in neurodegenerative diseases: the role of nanotechnology. Front Med. 2025;12: 1522223. DOI

Afolayan JO, Adebiyi MO, Arowolo MO, Chakraborty C, Adebiyi AA. Breast cancer detection using particle swarm optimization and decision tree machine learning technique. In: Afolayan JO, Adebiyi MO, Arowolo MO, Chakraborty C, Adebiyi AA, editors. Intelligent healthcare: infrastructure, algorithms and management. Springer; 2022. p. 61–83. DOI

Goel A, Goel AK, Kumar A. The role of artificial neural network and machine learning in utilizing spatial information. Spat Inf Res. 2023;31:275–85. DOI

Wang P, Fan E, Wang P. Comparative analysis of image classification algorithms based on traditional machine learning and deep learning. Pattern Recogn Lett. 2021;141:61–7. DOI

Dou B, Zhu Z, Merkurjev E, Ke L, Chen L, Jiang J, Zhu Y, Liu J, Zhang B, Wei G-W. Machine learning methods for small data challenges in molecular science. Chem Rev. 2023;123:8736–80. PubMed DOI PMC

Choudhary K, DeCost B, Chen C, Jain A, Tavazza F, Cohn R, Park CW, Choudhary A, Agrawal A, Billinge SJ. Recent advances and applications of deep learning methods in materials science. npj Comput Mater. 2022;8: 59. DOI

Choi YK, Kern NR, Kim S, Kanhaiya K, Afshar Y, Jeon SH, Jo S, Brooks BR, Lee J, Tadmor EB. CHARMM-GUI nanomaterial modeler for modeling and simulation of nanomaterial systems. J Chem Theory Comput. 2021;18:479–93. PubMed DOI PMC

Tsukanov AA, Turk B, Vasiljeva O, Psakhie SG. Computational indicator approach for assessment of nanotoxicity of two-dimensional nanomaterials. Nanomaterials. 2022;12:650. PubMed DOI PMC

Rahmani R, Lyubartsev AP. Biomolecular adsorprion at ZnS nanomaterials: a molecular dynamics simulation study of the adsorption preferences, effects of the surface curvature and coating. Nanomaterials. 2023;13:2239. PubMed DOI PMC

Woo J, Kim SH, Han K, Choi M. Characterization of dynamics and information processing of integrate-and-fire neuron models. J Phys A Math Theor. 2021;54: 445601. DOI

Uwate Y, Nishio Y, Obien MEJ, Frey U. Local and global activities of Izhikevich neuron model in networks. In: 2021 18th international SoC design conference (ISOCC). IEEE; 2021. p. 219–20.

Schirner M, Domide L, Perdikis D, Triebkorn P, Stefanovski L, Pai R, Prodan P, Valean B, Palmer J, Langford C. Brain simulation as a cloud service: the virtual brain on EBRAINS. Neuroimage. 2022;251: 118973. PubMed DOI

Gholampour S, Fatouraee N. Boundary conditions investigation to improve computer simulation of cerebrospinal fluid dynamics in hydrocephalus patients. Commun Biol. 2021;4:394. PubMed DOI PMC

Nandipati M, Fatoki O, Desai S. Bridging nanomanufacturing and artificial intelligence—a comprehensive review. Materials. 2024;17:1621. PubMed DOI PMC

Philip AK, Samuel BA, Bhatia S, Khalifa SA, El-Seedi HR. Artificial intelligence and precision medicine: a new frontier for the treatment of brain tumors. Life. 2022;13:24. PubMed DOI PMC

Himeur Y, Elnour M, Fadli F, Meskin N, Petri I, Rezgui Y, Bensaali F, Amira A. AI-big data analytics for building automation and management systems: a survey, actual challenges and future perspectives. Artif Intell Rev. 2023;56:4929–5021. PubMed DOI

Botifoll M, Pinto-Huguet I, Arbiol J. Machine learning in electron microscopy for advanced nanocharacterization: current developments, available tools and future outlook. Nanoscale Horiz. 2022;7:1427–77. PubMed DOI

Lu S, Jayaraman A. Machine learning for analyses and automation of structural characterization of polymer materials. Prog Polym Sci. 2024. https://doi.org/10.1016/j.progpolymsci.2024.101828 . PubMed DOI

Alshawwa SZ, Kassem AA, Farid RM, Mostafa SK, Labib GS. Nanocarrier drug delivery systems: characterization, limitations, future perspectives and implementation of artificial intelligence. Pharmaceutics. 2022;14:883. PubMed DOI PMC

Yan X, Yue T, Winkler DA, Yin Y, Zhu H, Jiang G, Yan B. Converting nanotoxicity data to information using artificial intelligence and simulation. Chem Rev. 2023;123:8575–637. PubMed DOI

Srivastava A, Hanig JP. Quantitative neurotoxicology: potential role of artificial intelligence/deep learning approach. J Appl Toxicol. 2021;41:996–1006. PubMed DOI

Haghshenas Z, Bidaki N, Rashtbarzadeh A, Nazari E, Rezaei-Tavirani M. Impact of heavy metals on Alzheimer disease, using artificial intelligence. Int J Med Toxicol Forensic Med. 2024;14: E45529. DOI

Ali H. AI in neurodegenerative disease research: early detection, cognitive decline prediction, and brain imaging biomarker identification. Int J Eng Technol Res Manag. 2022;6:71.

Yao Z, Wang H, Yan W, Wang Z, Zhang W, Wang Z, Zhang G. Artificial intelligence-based diagnosis of Alzheimer’s disease with brain MRI images. Eur J Radiol. 2023;165: 110934. PubMed DOI

Mathur S, Jaiswal A. Demystifying the role of artificial intelligence in neurodegenerative diseases. In: Gaur L, Abraham A, Ajith R, editors. AI and neuro-degenerative diseases: insights and solutions. Springer; 2024. p. 1–33.

Secara I-A, Hordiiuk D. Personalized health monitoring systems: integrating wearable and AI. J Intell Learn Syst Appl. 2024;16:44–52.

Manickam P, Mariappan SA, Murugesan SM, Hansda S, Kaushik A, Shinde R, Thipperudraswamy S. Artificial intelligence (AI) and internet of medical things (IoMT) assisted biomedical systems for intelligent healthcare. Biosensors. 2022;12:562. PubMed DOI PMC

Laghari AA, Wu K, Laghari RA, Ali M, Khan AA. A review and state of art of Internet of Things (IoT). Arch Comput Methods Eng. 2022;29:1395–413. DOI

Warraich HJ, Tazbaz T, Califf RM. FDA perspective on the regulation of artificial intelligence in health care and biomedicine. JAMA. 2025;333:241–7. PubMed DOI

Palaniappan K, Lin YET, Vogel S. Global regulatory frameworks for the use of artificial intelligence (AI) in the healthcare services sector. Healthcare. 2024;12:562. PubMed DOI PMC

Jiménez-Sánchez A, Avlona N-R, de Boer S, Campello VM, Feragen A, Ferrante E, Ganz M, Gichoya JW, Gonzalez C, Groefsema S. In the picture: medical imaging datasets, artifacts, and their living review. In: Proceedings of the 2025 ACM conference on fairness, accountability, and transparency. 2025. p. 511–31.

Ronzetti M, Simeonov A. A comprehensive update on the application of high-throughput fluorescence imaging for novel drug discovery. Expert Opin Drug Discov. 2025;20:785–97. PubMed DOI

Sher N, Ahmed M, Mushtaq N. Biogenic synthesis of gold nanoparticles using Heliotropium eichwaldi L and neuroprotective potential via anticholinesterase inhibition in rat brain. Appl Organomet Chem. 2023;37: e7000. DOI

Al-Radadi NS, Al-Bishri WM, Salem NA, ElShebiney SA. Plant-mediated green synthesis of gold nanoparticles using an aqueous extract of Passiflora ligularis, optimization, characterizations, and their neuroprotective effect on propionic acid-induced autism in Wistar rats. Saudi Pharm J. 2024;32: 101921. PubMed DOI

Alkhalaf MI, Hussein RH, Hamza A. Green synthesis of silver nanoparticles by Nigella sativa extract alleviates diabetic neuropathy through anti-inflammatory and antioxidant effects. Saudi J Biol Sci. 2020;27:2410–9. PubMed DOI PMC

Li L, Li L, Zhou X, Yu Y, Li Z, Zuo D, Wu Y. Silver nanoparticles induce protective autophagy via Ca2+/CaMKKβ/AMPK/mTOR pathway in SH-SY5Y cells and rat brains. Nanotoxicology. 2019;13:369–91. PubMed DOI

Lemus-De la Cruz J, Trejo-Hurtado M, Landa-Moreno C, Peña-Montes D, Landeros-Páramo JL, Cortés-Rojo C, Montoya-Pérez R, Rosas G, Saavedra-Molina A. Antioxidant effects of silver nanoparticles obtained by green synthesis from the aqueous extract of Eryngium carlinae on the brain mitochondria of streptozotocin-induced diabetic rats. J Bioenerg Biomembr. 2023;55:123–35. PubMed DOI

Wahle T, Sofranko A, Dekkers S, Miller MR, Heusinkveld HJ, Albrecht C, Cassee FR, Schins RP. Evaluation of neurological effects of cerium dioxide nanoparticles doped with different amounts of zirconium following inhalation exposure in mouse models of Alzheimer’s and vascular disease. Neurochem Int. 2020;138: 104755. PubMed DOI PMC

Patel V, Shah J. Anti-cancer and neuroprotective effects of conjugated graphene quantum dot in brain tumor-bearing rat model. Nano Express. 2023;4: 045010. DOI

Raghavan A, Radhakrishnan M, Soren K, Wadnerkar P, Kumar A, Chakravarty S, Ghosh S. Biological evaluation of graphene quantum dots and nitrogen-doped graphene quantum dots as neurotrophic agents. ACS Appl Bio Mater. 2023;6:2237–47. PubMed DOI

Raghavan A, Tripathy C, Radhakrishnan M, Chakravarty S, Ghosh S. Potential of zinc oxide-graphene quantum dots and zinc oxide-nitrogen-doped graphene quantum dot nanocomposites as neurotrophic agents. ACS Appl Bio Mater. 2023;6:4208–16. PubMed DOI

Find record

Citation metrics

Logged in users only

Archiving options

Loading data ...