Smart Nanomedicines for Neurodegenerative Diseases: Empowering New Therapies with Molecular Imaging and Artificial Intelligence
Status Publisher Language English Country New Zealand Media print-electronic
Document type Journal Article, Review
PubMed
41066060
DOI
10.1007/s40291-025-00813-6
PII: 10.1007/s40291-025-00813-6
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
- Review MeSH
Neurodegenerative diseases (NDDs) remain among the most challenging disorders to treat, owing to their multifactorial pathology, limited drug delivery across the blood-brain barrier, and lack of effective disease-modifying therapies. Smart nanomedicines are emerging as powerful tools to overcome these challenges by enabling targeted delivery, controlled release, and enhanced bioavailability of therapeutics. In parallel, advances in molecular imaging, combined with machine learning (ML) and artificial intelligence (AI), are transforming the design, validation, and optimization of nanomedicines. This article integrates the rapidly evolving fields of nanomedicine and AI/ML-driven imaging to evaluate their synergistic potential toward NDD therapy. The capabilities of AI-aided imaging for mapping nanomedicine biodistribution, predicting therapeutic outcomes, guiding nanoparticle design, and ensuring quality control at preclinical and clinical stages in NDDs are discussed. This synergistic approach opens new avenues for precision medicine, enabling personalized and adaptive treatment strategies for Alzheimer's, Parkinson's, and other NDDs by linking smart nanocarriers with intelligent imaging analytics. Hence, this article presents a roadmap for translating AI-guided nanomedicine-integrated imaging platforms into clinically viable solutions, marking a paradigm shift in the diagnosis and treatment of NDDs.
AELIA Organization 9th Km Thessaloniki Thermi 57001 Thessaloniki Greece
Catalan Institute of Nanoscience and Nanotechnology Campus UAB 08193 Bellaterra Barcelona Spain
Chemical Engineering Department University of Tennessee Knoxville TN 37403 USA
Department of Medical Oncology Loannina University Hospital Loannina 45500 Greece
Department of Research and Innovation Medway NHS Foundation Trust Gillingham ME7 5NY UK
Faculty of Engineering and Science University of Greenwich London Chatham Maritime Kent ME4 4TB UK
Faculty of Medicine Health and Social Care Canterbury Christ Church University Canterbury CT1 1QU UK
Faculty of Medicine School of Health Sciences University of Ioannina Loannina 45110 Greece
Faculty of Medicine Tbilisi State University 0177 Tbilisi Georgia
See more in PubMed
Teleanu RI, Niculescu A-G, Roza E, Vladâcenco O, Grumezescu AM, Teleanu DM. Neurotransmitters—key factors in neurological and neurodegenerative disorders of the central nervous system. Int J Mol Sci. 2022;23:5954. PubMed DOI PMC
Ranjan V, Verma K. Brief description of public health and burden of neurodegenerative diseases. In: Qidwai T, editor. Neurodegenerative diseases: multifactorial degenerative processes, biomarkers and therapeutic approaches. Bentham Science Publishers; 2022. p. 261–72. DOI
World Health Organization. Over 1 in 3 people affected by neurological conditions, the leading cause of illness and disability worldwide. Geneva: World Health Organization; 2024.
Scheltens P, De Strooper B, Kivipelto M, Holstege H, Chételat G, Teunissen CE, Cummings J, van der Flier WM. Alzheimer’s disease. Lancet. 2021;397:1577–90. PubMed DOI PMC
Weintraub D, Aarsland D, Chaudhuri KR, Dobkin RD, Leentjens AF, Rodriguez-Violante M, Schrag A. The neuropsychiatry of Parkinson’s disease: advances and challenges. Lancet Neurol. 2022;21:89–102. PubMed DOI PMC
Feldman EL, Goutman SA, Petri S, Mazzini L, Savelieff MG, Shaw PJ, Sobue G. Amyotrophic lateral sclerosis. Lancet. 2022;400:1363–80. PubMed DOI PMC
Lu M, Zhao Q, Poston KL, Sullivan EV, Pfefferbaum A, Shahid M, Katz M, Montaser-Kouhsari L, Schulman K, Milstein A. Quantifying Parkinson’s disease motor severity under uncertainty using MDS-UPDRS videos. Med Image Anal. 2021;73: 102179. PubMed DOI PMC
Exuzides A, Matos JE, Patel AM, Martin AA, Ricker B, Bega D. Understanding the burdens associated with Huntington’s disease in manifest patients and care partners—comparing to Parkinson’s disease and the general population. Brain Sci. 2022;12:161. PubMed DOI PMC
Zhang X-X, Tian Y, Wang Z-T, Ma Y-H, Tan L, Yu J-T. The epidemiology of Alzheimer’s disease modifiable risk factors and prevention. J Prev Alzheimers Dis. 2021;8:313–21. PubMed DOI PMC
Mead RJ, Shan N, Reiser HJ, Marshall F, Shaw PJ. Amyotrophic lateral sclerosis: a neurodegenerative disorder poised for successful therapeutic translation. Nat Rev Drug Discov. 2023;22:185–212. PubMed DOI
Huang Y, Li Y, Pan H, Han L. Global, regional, and national burden of neurological disorders in 204 countries and territories worldwide. J Glob Health. 2023. https://doi.org/10.7189/jogh.13.04160 . PubMed DOI PMC
Palanisamy CP, Pei J, Alugoju P, Anthikapalli NVA, Jayaraman S, Veeraraghavan VP, Gopathy S, Roy JR, Janaki CS, Thalamati D. New strategies of neurodegenerative disease treatment with extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs). Theranostics. 2023;13:4138. PubMed DOI PMC
Vissers MF, Heuberger JA, Groeneveld GJ. Targeting for success: demonstrating proof-of-concept with mechanistic early phase clinical pharmacology studies for disease-modification in neurodegenerative disorders. Int J Mol Sci. 2021;22:1615. PubMed DOI PMC
Naziris N, Demetzos C. Advanced health technologies and nanotechnologies in neurodegenerative diseases. In: Vlamos P, editor. GeNeDis: genetics and neurodegenerative diseases. Springer; 2021. p. 317–20.
Zaky MY, Mohamed EE, Ahmed OM. Neurodegenerative disorders: available therapies and their limitations. In: Khalifa MMAH, editor. Nanocarriers in neurodegenerative disorders. CRC Press; 2025. p. 29–46.
Akhtar A, Andleeb A, Waris TS, Bazzar M, Moradi A-R, Awan NR, Yar M. Neurodegenerative diseases and effective drug delivery: a review of challenges and novel therapeutics. J Controlled Release. 2021;330:1152–67. DOI
Lamptey RN, Chaulagain B, Trivedi R, Gothwal A, Layek B, Singh J. A review of the common neurodegenerative disorders: current therapeutic approaches and the potential role of nanotherapeutics. Int J Mol Sci. 2022;23:1851. PubMed DOI PMC
Hassanzadeh-Khanmiri M, Moshari A, Kheradmand R, Haghgouei T, Homaei M, Charsouei S, Mobed A. Nanomedicine: a cost-effective and powerful platform for managing neurodegenerative diseases. Metab Brain Dis. 2025;40:142. PubMed DOI
Waqar MA, Mubarak N, Khan AM, Ahmad S, Zaib M, Kanwal U, Khan IN, Ayesha M, Mughal M, Fahad M. Innovation in nanomedicine: nanocarriers for central nervous system disorders management. Int J Polym Mater Polym Biomater. 2025;74:1110–27. DOI
Thapa RK, Kim JO. Nanomedicine-based commercial formulations: current developments and future prospects. J Pharm Investig. 2023;53:19–33. PubMed DOI
Butt A, Bach H. Nanomedicine and clinical diagnostics part I: applications in conventional imaging (MRI, X-ray/CT, and ultrasound). Nanomedicine. 2025;20:167–82. PubMed DOI
Lu W, Yao J, Zhu X, Qi Y. Nanomedicines: redefining traditional medicine. Biomed Pharmacother. 2021;134: 111103. PubMed DOI
Singaravelu S, Motsoene F, Abrahamse H, Dhilip Kumar SS. Green-synthesized metal nanoparticles: a promising approach for accelerated wound healing. Front Bioeng Biotechnol. 2025;13:1637589. PubMed DOI PMC
Jeevanandam J, Kiew SF, Boakye-Ansah S, Lau SY, Barhoum A, Danquah MK, Rodrigues J. Green approaches for the synthesis of metal and metal oxide nanoparticles using microbial and plant extracts. Nanoscale. 2022;14:2534–71. PubMed DOI
Ramanathan S, Gopinath SC, Arshad MM, Poopalan P, Perumal V. Nanoparticle synthetic methods: strength and limitations. In: Thirugnanasambandan T, Gopinath SCB, Gang F, editors. Nanoparticles in analytical and medical devices. Elsevier; 2021. p. 31–43. DOI
Reddy KR, Reddy PA, Reddy CV, Shetti NP, Babu B, Ravindranadh K, Shankar MV, Reddy MC, Soni S, Naveen S. Functionalized magnetic nanoparticles/biopolymer hybrids: synthesis methods, properties and biomedical applications. In: Gurtler V, Ball AS, Soni S, editors. Methods in microbiology, vol. 46. Elsevier; 2019. p. 227–54.
Kirubakaran D, Wahid JBA, Karmegam N, Jeevika R, Sellapillai L, Rajkumar M, SenthilKumar KA. Comprehensive review on the green synthesis of nanoparticles: advancements in biomedical and environmental applications. Biomed Mater Devices. 2025:1–26.
Mukherjee S, Madamsetty VS, Bhattacharya D, Roy Chowdhury S, Paul MK, Mukherjee A. Recent advancements of nanomedicine in neurodegenerative disorders theranostics. Adv Funct Mater. 2020;30:2003054. DOI
Serov N, Vinogradov V. Artificial intelligence to bring nanomedicine to life. Adv Drug Delivery Rev. 2022;184: 114194. DOI
Heydari S, Masoumi N, Esmaeeli E, Ayyoubzadeh SM, Ghorbani-Bidkorpeh F, Ahmadi M. Artificial intelligence in nanotechnology for treatment of diseases. J Drug Target. 2024;32:1247–66. PubMed DOI
IHME IfHMaE. (2024). “Death rate from Parkinson’s disease. In: Global burden of disease—deaths and DALYs” [original data], vol 2025. I. f. H. M. a. Evaluation ed, Institute for Health Metrics and Evaluation, United States.
Gustavsson A, Norton N, Fast T, Frölich L, Georges J, Holzapfel D, Kirabali T, Krolak-Salmon P, Rossini PM, Ferretti MT. Global estimates on the number of persons across the Alzheimer’s disease continuum. Alzheimers Dement. 2023;19:658–70. PubMed DOI
Kumar A, Sidhu J, Lui F, Tsao JW. Alzheimer disease. In: StatPearls [Internet]. Treasure Island, FL: StatPearls Publishing; 2024. https://www.ncbi.nlm.nih.gov/books/NBK499922/ .
Ovsepian SV, O’Leary VB, Zaborszky L. Cholinergic mechanisms in the cerebral cortex: beyond synaptic transmission. Neuroscientist. 2016;22:238–51. PubMed DOI
Ovsepian SV, O’Leary VB, Hoschl C, Zaborszky L. Integrated phylogeny of the human brain and pathobiology of Alzheimer’s disease: a unifying hypothesis. Neurosci Lett. 2021;755: 135895. PubMed DOI PMC
Hampel H, Mesulam M-M, Cuello AC, Farlow MR, Giacobini E, Grossberg GT, Khachaturian AS, Vergallo A, Cavedo E, Snyder PJ. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain. 2018;141:1917–33. PubMed DOI PMC
Paroni G, Bisceglia P, Seripa D. Understanding the amyloid hypothesis in Alzheimer’s disease. J Alzheimers Dis. 2019;68:493–510. PubMed DOI
Budson AE, Solomon PR. Memory loss, Alzheimer’s disease, and dementia-E-book: a practical guide for clinicians. Amsterdam: Elsevier Health Sciences; 2021.
Luo Y, Qiao L, Li M, Wen X, Zhang W, Li X. Global, regional, national epidemiology and trends of Parkinson’s disease from 1990 to 2021: findings from the global burden of disease study 2021. Front Aging Neurosci. 2025;16:1498756. PubMed DOI PMC
Kouli A, Torsney KM, Kuan W-L. Parkinson’s disease: etiology, neuropathology, and pathogenesis. In: Stoker TB, Greenland JC, editors. Parkinson’s disease: pathogenesis and clinical aspects. Brisbane: Codon Publications; 2018. https://doi.org/10.15586/codonpublications.parkinsonsdisease.2018 . DOI
Zhou ZD, Yi LX, Wang DQ, Lim TM, Tan EK. Role of dopamine in the pathophysiology of Parkinson’s disease. Transl Neurodegener. 2023;12:44. PubMed DOI PMC
Sveinbjornsdottir S. The clinical symptoms of Parkinson’s disease. J Neurochem. 2016;139:318–24. PubMed DOI
Bloem BR, Okun MS, Klein C. Parkinson’s disease. Lancet. 2021;397:2284–303. PubMed DOI
Xu L, Liu T, Liu L, Yao X, Chen L, Fan D, Zhan S, Wang S. Global variation in prevalence and incidence of amyotrophic lateral sclerosis: a systematic review and meta-analysis. J Neurol. 2020;267:944–53. PubMed DOI
Brotman RG, Moreno-Escobar MC, Joseph J, Pawar G. Amyotrophic lateral sclerosis. In: StatPearls [Internet]. Treasure Island, FL: StatPearls Publishing; 2023. https://www.ncbi.nlm.nih.gov/books/NBK556151/ .
Ovsepian SV, O’Leary VB, Martinez S. Selective vulnerability of motor neuron types and functional groups to degeneration in amyotrophic lateral sclerosis: review of the neurobiological mechanisms and functional correlates. Brain Struct Funct. 2024;229:1–14. PubMed DOI
Tzeplaeff L, Wilfling S, Requardt MV, Herdick M. Current state and future directions in the therapy of ALS. Cells. 2023;12:1523. PubMed DOI PMC
Morgan S, Orrell RW. Pathogenesis of amyotrophic lateral sclerosis. Br Med Bull. 2016;119:87–97. PubMed DOI
Brown RH, Al-Chalabi A. Amyotrophic lateral sclerosis. N Engl J Med. 2017;377:162–72. PubMed DOI
Shusharina N, Yukhnenko D, Botman S, Sapunov V, Savinov V, Kamyshov G, Sayapin D, Voznyuk I. Modern methods of diagnostics and treatment of neurodegenerative diseases and depression. Diagnostics. 2023;13:573. PubMed DOI PMC
Priyadarshini S, Ajroud-Driss S. Update on ALS treatment. Curr Treat Options Neurol. 2023;25:199–212. DOI
Corcia P, Guy N, Pradat P-F, Soriani M-H, Verschueren A, Couratier P. Treatment continuity of amyotrophic lateral sclerosis with available riluzole formulations: state of the art and current challenges in a ‘real-world’ setting. Amyotrophic Lateral Scler Frontotemporal Degener. 2025;26:15–21. DOI
Colovic MB, Krstic DZ, Lazarevic-Pasti TD, Bondzic AM, Vasic VM. Acetylcholinesterase inhibitors: pharmacology and toxicology. Curr Neuropharmacol. 2013;11:315–35. PubMed DOI PMC
Oliveira C, Bagetta D, Cagide F, Teixeira J, Amorim R, Silva T, Garrido J, Remião F, Uriarte E, Oliveira PJ. Benzoic acid-derived nitrones: a new class of potential acetylcholinesterase inhibitors and neuroprotective agents. Eur J Med Chem. 2019;174:116–29. PubMed DOI
Grossberg GT. Cholinesterase inhibitors for the treatment of Alzheimer’s disease: getting on and staying on. Curr Ther Res. 2003;64:216–35. PubMed DOI PMC
Mehta M, Adem A, Sabbagh M. New acetylcholinesterase inhibitors for Alzheimer’s disease. Int J Alzheimer’s Dis. 2012;2012: 728983.
Bom A, Hope F, Rutherford S, Thomson K. Preclinical pharmacology of sugammadex. J Crit Care. 2009;24:29–35. PubMed DOI
Caldwell JE. Clinical limitations of acetylcholinesterase antagonists. J Crit Care. 2009;24:21–8. PubMed DOI
Jewett BE, Thapa B. Physiology, NMDA receptor. In: StatPearls [Internet]. Treasure Island, FL: StatPearls Publishing; 2022. https://www.ncbi.nlm.nih.gov/books/NBK519495/ .
Jorratt P, Ricny J, Leibold C, Ovsepian SV. Endogenous modulators of NMDA receptor control dendritic field expansion of cortical neurons. Mol Neurobiol. 2023;60:1440–52. PubMed DOI
Moore TJ, Alami A, Alexander GC, Mattison DR. Safety and effectiveness of NMDA receptor antagonists for depression: a multidisciplinary review. Pharmacotherapy. 2022;42:567–79. PubMed DOI PMC
Egunlusi AO, Joubert J. NMDA receptor antagonists: emerging insights into molecular mechanisms and clinical applications in neurological disorders. Pharmaceuticals. 2024;17:639. PubMed DOI PMC
Lipton SA. Paradigm shift in NMDA receptor antagonist drug development: molecular mechanism of uncompetitive inhibition by memantine in the treatment of Alzheimer’s disease and other neurologic disorders. J Alzheimers Dis. 2005;6:S61–74. DOI
Rafe MR, Saha P, Bello ST. Targeting NMDA receptors with an antagonist is a promising therapeutic strategy for treating neurological disorders. Behav Brain Res. 2024;472: 115173. PubMed DOI
Aiyer R, Mehta N, Gungor S, Gulati AA. Systematic review of NMDA receptor antagonists for treatment of neuropathic pain in clinical practice. Clin J Pain. 2018;34:450–67. PubMed DOI
Jorratt P, Hoschl C, Ovsepian SV. Endogenous antagonists of N-methyl-D-aspartate receptor in schizophrenia. Alzheimer’s Dementia. 2021;17:888–905. DOI
Dhawan A, Choudhary S, Gupta S, Chander A, Dhanawat M. Auvelity: a new era in medicine-unraveling the multifaceted benefits of dextromethorphan/bupropion combination. Curr Drug Ther. 2024;19:628–37. DOI
Chaturvedi C, Singh A. Suppression of annual testicular development in Indian palm squirrel, Funambulus pennanti by 8 hr temporal relationship of serotonin and dopamine precursor drugs. J Neural Transm. 1992;88:53–60. DOI
Franco R, Reyes-Resina I, Navarro G. Dopamine in health and disease: much more than a neurotransmitter. Biomedicines. 2021;9:109. PubMed DOI PMC
Bogetofte H, Alamyar A, Blaabjerg M, Meyer M. Levodopa therapy for Parkinson’s disease: history, current status and perspectives. CNS Neurol Disord Drug Targets. 2020;19:572–83. PubMed DOI
Vaswani PA, Wilkinson JR. (2024) Parkinson’s disease and other movement disorders. In: Tipirneni KE, Nicholas BD, editors. Geriatric medicine: a person centered evidence based approach. Springer; 2024. p. 1073–96. DOI
Cristancho AG, Marsh ED. Epigenetics modifiers: potential hub for understanding and treating neurodevelopmental disorders from hypoxic injury. J Neurodev Disord. 2020;12:1–12. DOI
Maes T, Mascaró C, Rotllant D, Lufino MMP, Estiarte A, Guibourt N, Cavalcanti F, Griñan-Ferré C, Pallàs M, Nadal R. Modulation of KDM1A with vafidemstat rescues memory deficit and behavioral alterations. PLoS ONE. 2020;15: e0233468. PubMed DOI PMC
Teijido O, Cacabelos R. Pharmacoepigenomic interventions as novel potential treatments for Alzheimer’s and Parkinson’s diseases. Int J Mol Sci. 2018;19:3199. PubMed DOI PMC
Aliperti V, Skonieczna J, Cerase A. Long non-coding RNA (lncrna) roles in cell biology, neurodevelopment and neurological disorders. Non-Coding RNA. 2021;7:36. PubMed DOI PMC
Kwon MJ, Kim S, Han MH, Lee SB. Epigenetic changes in neurodegenerative diseases. Mol Cells. 2016;39:783–9. PubMed DOI PMC
Wen K-x, Milic J, El-Khodor B, Dhana K, Nano J, Pulido T, Kraja B, Zaciragic A, Bramer WM, Troup J. The role of DNA methylation and histone modifications in neurodegenerative diseases: a systematic review. PLoS ONE. 2016;11: e0167201. PubMed DOI PMC
Schaevitz L, Berger-Sweeney J, Ricceri L. One-carbon metabolism in neurodevelopmental disorders: using broad-based nutraceutics to treat cognitive deficits in complex spectrum disorders. Neurosci Biobehav Rev. 2014;46:270–84. PubMed DOI
Kalecký K, Ashcraft P, Bottiglieri T. One-carbon metabolism in Alzheimer’s disease and Parkinson’s disease brain tissue. Nutrients. 2022;14:599. PubMed DOI PMC
Dayon L, Guiraud SP, Corthésy J, Da Silva L, Migliavacca E, Tautvydaitė D, Oikonomidi A, Moullet B, Henry H, Métairon S. One-carbon metabolism, cognitive impairment and CSF measures of Alzheimer pathology: homocysteine and beyond. Alzheimers Res Ther. 2017;9(1):1–11. DOI
Mukherjee A, Biswas S, Roy I. Immunotherapy: an emerging treatment option for neurodegenerative diseases. Drug Discov Today. 2024. https://doi.org/10.1016/j.drudis.2024.103974 . PubMed DOI
Sun J, Roy S. Gene-based therapies for neurodegenerative diseases. Nat Neurosci. 2021;24:297–311. PubMed DOI PMC
Lasheen NN, Allam S, Elgarawany A, Aswa DW, Mansour R, Farouk Z. Limitations and potential strategies of immune checkpoint blockade in age-related neurodegenerative disorders. J Physiol Sci. 2024;74:46. PubMed DOI PMC
García-González N, Gonçalves-Sánchez J, Gómez-Nieto R, Gonçalves-Estella JM, López DE. Advances and challenges in gene therapy for neurodegenerative diseases: a systematic review. Int J Mol Sci. 2024;25:12485. PubMed DOI PMC
Sushma N, Mondal AC. Immunotherapeutic approaches for the treatment of neurodegenerative diseases: challenges and outcomes. CNS Neurol Disord Drug Targets. 2023;22:404–16. PubMed DOI
Kakoti BB, Bezbaruah R, Ahmed N. Therapeutic drug repositioning with special emphasis on neurodegenerative diseases: threats and issues. Front Pharmacol. 2022;13:1007315. PubMed DOI PMC
Tripathi MK, Bhardwaj B, Waiker DK, Tripathi A, Shrivastava SK. Discovery of novel dual acetylcholinesterase and butyrylcholinesterase inhibitors using machine learning and structure-based drug design. J Mol Struct. 2023;1286: 135517. DOI
Schultz KJ, Colby SM, Yesiltepe Y, Nuñez JR, McGrady MY, Renslow RS. Application and assessment of deep learning for the generation of potential NMDA receptor antagonists. Phys Chem Chem Phys. 2021;23:1197–214. PubMed DOI
He J, Wu L, Du W, Zhang F, Lin S, Ling Y, Ren K, Chen Z, Chen H, Su W. Instrumented timed up and go test and machine learning-based levodopa response evaluation: a pilot study. J Neuroeng Rehabil. 2024;21: 163. PubMed DOI PMC
Suganthy N, Sri Ramkumar V, Pugazhendhi A, Benelli G, Archunan G. Biogenic synthesis of gold nanoparticles from Terminalia arjuna bark extract: assessment of safety aspects and neuroprotective potential via antioxidant, anticholinesterase, and antiamyloidogenic effects. Environ Sci Pollut Res. 2018;25:10418–33. DOI
Abdelkader NF, El-Batal AI, Amin YM, Hawas AM, Hassan SH, Eid NI. Neuroprotective effect of gold nanoparticles and alpha-lipoic acid mixture against radiation-induced brain damage in rats. Int J Mol Sci. 2022;23: 9640. PubMed DOI PMC
Zhang J, Liu R, Zhang D, Zhang Z, Zhu J, Xu L, Guo Y. Neuroprotective effects of maize tetrapeptide-anchored gold nanoparticles in Alzheimer’s disease. Colloids Surf B. 2021;200: 111584. DOI
Nkentsha Z, Rambharose S. Green-synthesized gold nanoparticles exhibit neuroprotective activity against oxidative stress-induced damage in SH-SY5Y cells. J Nanopart Res. 2025;27: 197. DOI
Zhang Y, Feng S, Wang P. Neuroprotective properties of plant extract green-formulated silver nanoparticles on the contusive model of spinal cord injury in rats. Inorg Chem Commun. 2024;163: 112265. DOI
Khorrami S, Dogani M, Mahani SE, Moghaddam MM, Taheri RA. Neuroprotective activity of green synthesized silver nanoparticles against methamphetamine-induced cell death in human neuroblastoma SH-SY5Y cells. Sci Rep. 2023;13: 11867. PubMed DOI PMC
Mokhnache M, Hani B, Koca FD, Ünal G, Nasrat AR, Basma A, Bozkurt NM, Bachir AAM, Harzallah D. Evaluation of antimicrobial, anticancer and neuroprotective activities of silver nanoparticles (AgNPs) green-synthesized using a red pigment produced by Streptomyces sp. A23 strain isolated from Algerian bee pollen. J Serb Chem Soc. 2025;90:561–78. DOI
Albrakati A, Alsharif KF, Al Omairi NE, Alsanie WF, Almalki AS, Abd Elmageed ZY, Elshopakey GE, Lokman MS, Bauomy AA, Abdel Moneim AE. Neuroprotective efficiency of prodigiosins conjugated with selenium nanoparticles in rats exposed to chronic unpredictable mild stress is mediated through antioxidative, anti-inflammatory, anti-apoptotic, and neuromodulatory activities. Int J Nanomed. 2021. https://doi.org/10.2147/IJN.S323436 . DOI
Yan W, Liu Y, Mansooridara S, Kalantari AS, Sadeghian N, Taslimi P, Zangeneh A, Zangeneh MM. Chemical characterization and neuroprotective properties of copper nanoparticles green-synthesized by Nigella sativa L. seed aqueous extract against methadone-induced cell death in adrenal phaeochromocytoma (PC12) cell line. J Exp Nanosci. 2020;15:280–96. DOI
Ullah I, Neder RB, Ahmad M, Khan AQ, Rauf A, Alshammari A, Albekairi NA. Antimicrobial activities and neuroprotective potential for Alzheimer’s disease of pure, Mn Co, and Al-doped ZnO ultra-small nanoparticles. Green Process Synth. 2024;13: 20240096. DOI
Meenambal R, Kruk T, Jakubowska K, Gurgul J, Szczepanowicz K, Szczęch M, Szyk-Warszyńska L, Warszyński P, Jantas D. Influence of Eu3+ doping on physiochemical properties and neuroprotective potential of polyacrylic acid functionalized cerium oxide nanoparticles. Int J Mol Sci. 2024;25: 2501. PubMed DOI PMC
Hu Y, Guo H, Cheng S, Sun J, Du J, Liu X, Xiong Y, Chen L, Liu C, Wu C. Functionalized cerium dioxide nanoparticles with antioxidative neuroprotection for Alzheimer’s disease. Int J Nanomed. 2023. https://doi.org/10.2147/IJN.S434873 . DOI
Khadrawy YA, Hosny EN, Mohamed HSE. Assessment of the neuroprotective effect of green synthesized iron oxide nanoparticles capped with curcumin against a rat model of Parkinson’s disease. Iran J Basic Med Sci. 2024;27:81. PubMed PMC
Li L, Luo P, Wu S, Wang Y. Deciphering the neuroprotective effect of ascorbic acid mediated synthesis of iron oxide nanoparticles against Parkinson’s disease: an in vitro and in vivo approach. Macromol Res. 2023;31:949–60. DOI
Khafajah Y, Shaheen M, El Natour D, Merheb M, Matar R, Borjac J. Neuroprotective effects of zinc oxide nanoparticles in a rotenone-induced mouse model of Parkinson’s disease. Nanotheranostics. 2024;8:497. PubMed DOI PMC
Mamatha MG, Ansari MA, Begum MY, Prasad BD, Al Fatease A, Hani U, Alomary MN, Sultana S, Punekar SM, Mb N. Green synthesis of cerium oxide nanoparticles, characterization, and their neuroprotective effect on hydrogen peroxide-induced oxidative injury in human neuroblastoma (SH-SY5Y) cell line. ACS Omega. 2024;9:2639–49. PubMed DOI PMC
Beedkar-Pawase A, Raut SV, Kulkarni GR. Neuroprotective effect of magnesium oxide nanoparticles on SH-SY-5Y cell line. BioNanoScience. 2022;12:1238–50. DOI
Mohamed HR, Farouk AH, Elbasiouni SH, Nasif KA, Safwat G. Yttrium oxide nanoparticles ameliorates calcium hydroxide and calcium titanate nanoparticles induced genomic DNA and mitochondrial damage, ROS generation and inflammation. Sci Rep. 2024;14: 13015. PubMed DOI PMC
Cui C, Shen D, Zuo D, Ye X. Neuroprotective effects of sonochemical-synthesized SiO2 nanoparticles in vivo models of ischemic/reperfusion injury in stroke. Arab J Chem. 2021;14: 103416. DOI
Oukhrib M, Tamegart L, Assafi A, Hejji L, Azzouz A, Villarejo LP, Haida M, Mohamed C, Gamrani H. Effects of graphene oxide nanoparticles administration against reserpine-induced neurobehavioral damage and oxidative stress in an animal model of Parkinson’s disease. Food Chem Toxicol. 2023;178: 113904. PubMed DOI
Ding S, Bao Y, Lin Y, Pan Y, Fan Y, Wan J, Jiang J. Neuroprotective effect of functionalized multi-walled carbon nanotubes on spinal cord injury in rats. Int J Clin Exp Pathol. 2015;8:15769. PubMed PMC
Mosalam EM, Abdel-Bar HM, Elberri AI, Abdallah MS, Zidan A-AA, Batakoushy HA, Mansour HEA. Enhanced neuroprotective effect of verapamil-loaded hyaluronic acid modified carbon quantum dots in an in-vitro model of amyloid-induced Alzheimer’s disease. Int J Biol Macromol. 2024;275: 133742. PubMed DOI
Maghimaa M, Bharath S, Kandasamy S. Carbon-based nanoparticles for neural regeneration. In: Sivamaruthi BS, Sisubalan N, Kesika P, Varaprasad K, editors. Nanoparticles in modern neurological treatment. Springer; 2025. p. 263–82. DOI
Lin D, Li M, Gao Y, Yin L, Guan Y. Brain-targeted gene delivery of ZnO quantum dots nanoplatform for the treatment of Parkinson disease. Chem Eng J. 2022;429: 132210. DOI
Guo X, Lie Q, Liu Y, Jia Z, Gong Y, Yuan X, Liu J. Multifunctional selenium quantum dots for the treatment of Alzheimer’s disease by reducing Aβ-neurotoxicity and oxidative stress and alleviate neuroinflammation. ACS Appl Mater Interfaces. 2021;13:30261–73. PubMed DOI
Traverso AN, Fragale DJ, Viale DL, Garate O, Torres P, Valverde G, Berra A, Torbidoni AV, Yakisich JS, Grasselli M. Two-step preparation of protein-decorated biohybrid quantum dot nanoparticles for cellular uptake. Pharmaceutics. 2023;15:1651. PubMed DOI PMC
Jia G, Yang X, Yu Y, Li Y, Zhang Z, Tang X, Wang Q, Zheng H, Xiao Y, Li S. Quercetin carbon quantum dots: dual-target therapy for intracerebral hemorrhage in mice. Mol Brain. 2025;18:17. PubMed DOI PMC
Xu Z-R, Wang W-F, Liang X-F, Liu Z-H, Liu Y, Lin L, Zhu X. Protective effects of poly (butyl) cyanoacrylate nanoparticles containing vasoactive intestinal peptide against 6-hydroxydopamine-induced neurotoxicity in vitro. J Mol Neurosci. 2015;55:854–64. PubMed DOI
Liu Z, Gao X, Kang T, Jiang M, Miao D, Gu G, Hu Q, Song Q, Yao L, Tu Y. B6 peptide-modified PEG-PLA nanoparticles for enhanced brain delivery of neuroprotective peptide. Bioconjug Chem. 2013;24:997–1007. PubMed DOI
Shao X, Ma W, Xie X, Li Q, Lin S, Zhang T, Lin Y. Neuroprotective effect of tetrahedral DNA nanostructures in a cell model of Alzheimer’s disease. ACS Appl Mater Interfaces. 2018;10:23682–92. PubMed DOI
Yurek D, Hasselrot U, Sesenoglu-Laird O, Padegimas L, Cooper M. Intracerebral injections of DNA nanoparticles encoding for a therapeutic gene provide partial neuroprotection in an animal model of neurodegeneration. Nanomedicine. 2017;13:2209–17. PubMed DOI
Aly AE-E, Harmon BT, Padegimas L, Sesenoglu-Laird O, Cooper MJ, Waszczak BL. Intranasal delivery of pGDNF DNA nanoparticles provides neuroprotection in the rat 6-hydroxydopamine model of Parkinson’s disease. Mol Neurobiol. 2019;56:688–701. PubMed DOI
Vaswani P, Kosra S, Kansara K, Kumar A, Bhatia D. Neurotransmitter-loaded DNA nanocages as potential therapeutics for α-synuclein-based neuropathies in cells and in vivo. ACS Chem Neurosci. 2025. https://doi.org/10.1021/acschemneuro.5c00203 . PubMed DOI
Koca FD, Halici MG, Işik Y, Ünal G. Green synthesis of Ag-ZnO nanocomposites by using Usnea florida and Pseudevernia furfuracea lichen extracts and evaluation of their neurotoxic effects. Inorg Nano-Met Chem. 2024;54:818–25. DOI
Yang Y, Deng G, Wang P, Lv G, Mao R, Sun Y, Wang B, Liu X, Bian L, Zhou D. A selenium nanocomposite protects the mouse brain from oxidative injury following intracerebral hemorrhage. Int J Nanomed. 2021. https://doi.org/10.2147/IJN.S293681 . DOI
Rajkumar M, Davis Presley S, Thiyagarajulu N, Girigoswami K, Janani G, Kamaraj C, Madheswaran B, Prajapati B, Ali N, Khan MR. Gelatin/PLA-loaded gold nanocomposites synthesis using Syzygium cumini fruit extract and their antioxidant, antibacterial, anti-inflammatory, antidiabetic and anti-Alzheimer’s activities. Sci Rep. 2025;15:2110. PubMed DOI PMC
Affrald J, Narayan S. Gold/4-aminopyridine mucoadhesive chitosan nanocomposites as promising nasal drug delivery system for neuroprotection—an ex vivo investigation. Emerg Mater. 2024;7:2661–85. DOI
Sun D, Liu K, Li Y, Xie T, Zhang M, Liu Y, Tong H, Guo Y, Zhang Q, Liu H. Intrinsically bioactive manganese–eumelanin nanocomposites mediated antioxidation and anti-neuroinflammation for targeted theranostics of traumatic brain injury. Adv Healthc Mater. 2022;11:2200517. DOI
Aljohani NB, Qusti SY, Alsiny M, Aljoud F, Aljohani NB, Alsolami ES, Alamry KA, Hussein MA. Carboxymethylcellulose encapsulated fingolimod, siRNA@ZnO hybrid nanocomposite as a new anti-Alzheimer’s material. RSC Adv. 2024;14:22044–55. PubMed DOI PMC
El-Nashar HA, Abbas H, Zewail M, Noureldin MH, Ali MM, Shamaa MM, Khattab MA, Ibrahim N. Neuroprotective effect of artichoke-based nanoformulation in sporadic Alzheimer’s disease mouse model: focus on antioxidant, anti-inflammatory, and amyloidogenic pathways. Pharmaceuticals. 2022;15:1202. PubMed DOI PMC
Rajamanickam G, Manju SL. Neuroprotective effects of chitosan nanoparticles loaded with niruriflavone in an aluminium chloride-induced Alzheimer’s disease rat model. J Toxicol Environ Health Sci. 2024;16:181–90. DOI
Gorinova C, Aluani D, Yordanov Y, Kondeva-Burdina M, Tzankova V, Popova C, Yoncheva K. In vitro evaluation of antioxidant and neuroprotective effects of curcumin loaded in Pluronic micelles. Biotechnol Biotechnol Equip. 2016;30:991–7. DOI
Rompicherla SKL, Arumugam K, Bojja SL, Kumar N, Rao CM. Pharmacokinetic and pharmacodynamic evaluation of nasal liposome and nanoparticle based rivastigmine formulations in acute and chronic models of Alzheimer’s disease. Naunyn-Schmiedebergs Arch Pharmacol. 2021;394:1737–55. PubMed DOI PMC
Srivastava R, Choudhury PK, Dev SK, Rathore V. Neuroprotective effect of α-pinene self-emulsifying nanoformulation against 6-OHDA induced neurotoxicity on human SH-SY5Y cells and its in vivo validation for anti-Parkinson’s effect. J Biochem Mol Toxicol. 2021;35: e22902. PubMed DOI
Zhang L, Zhan M, Sun H, Zou Y, Laurent R, Mignani S, Majoral J-P, Cao X, Shen M, Shi X. Mesenchymal stem-cell-derived exosomes loaded with phosphorus dendrimers and quercetin treat Parkinson’s disease by modulating inflammatory immune microenvironment. ACS Appl Mater Interfaces. 2025;17:32013–27. PubMed DOI
Bogadi S, Bhaskaran M, Ravichandran V, Nesamony J, Chelliah S, Kuppusamy G, Prakash GM, Karri VVSR, Mallick S, Farahim F. Functionalized nanoparticles: a promising approach for effective management of Alzheimer’s disease. Mol Neurobiol. 2025. https://doi.org/10.1007/s12035-025-04917-2 . PubMed DOI
Gong J-Y, Holt MG, Hoet PH, Ghosh M. Neurotoxicity of four frequently used nanoparticles: a systematic review to reveal the missing data. Arch Toxicol. 2022;96:1141–212. PubMed DOI
Zhao Y, Yang Q, Liu D, Liu T, Xing L. Neurotoxicity of nanoparticles: insight from studies in zebrafish. Ecotoxicol Environ Saf. 2022;242: 113896. PubMed DOI
Jeevanandam J, San Chan Y, Danquah MK. Zebrafish as a model organism to study nanomaterial toxicity. Emerg Sci J. 2019;3:195–208. DOI
Shalaby OE, Ahmed YH, Mekkawy AM, Mahmoud MY, Khalil HM, Elbargeesy G. Assessment of the neuroprotective effect of selenium-loaded chitosan nanoparticles against silver nanoparticles-induced toxicity in rats. Neurotoxicology. 2023;95:232–43. PubMed DOI
Ahmed MM, Hussein MM. Neurotoxic effects of silver nanoparticles and the protective role of rutin. Biomed Pharmacother. 2017;90:731–9. PubMed DOI
Wu T, He K, Zhan Q, Ang S, Ying J, Zhang S, Zhang T, Xue Y, Chen Y, Tang M. Partial protection of N-acetylcysteine against MPA-capped CdTe quantum dot-induced neurotoxicity in rat primary cultured hippocampal neurons. Toxicol Res. 2015;4:1613–22. DOI
Teixeira MI, Lopes CM, Amaral MH, Costa PC. Navigating neurotoxicity and safety assessment of nanocarriers for brain delivery: evaluation models and insights. Acta Biomater. 2024;189:25–56. PubMed DOI
Wei W, Yan Z, Liu X, Qin Z, Tao X, Zhu X, Song E, Chen C, Ke PC, Leong DT. Brain accumulation and toxicity profiles of silica nanoparticles: the influence of size and exposure route. Environ Sci Technol. 2022;56:8319–25. PubMed DOI
Zia S, Islam Aqib A, Muneer A, Fatima M, Atta K, Kausar T, Zaheer C-NF, Ahmad I, Saeed M, Shafique A. Insights into nanoparticles-induced neurotoxicity and cope up strategies. Front Neurosci. 2023;17:1127460. PubMed DOI PMC
Li B, Zhang T, Tang M. Toxicity mechanism of nanomaterials: focus on endoplasmic reticulum stress. Sci Total Environ. 2022;834: 155417. PubMed DOI
Aschner M, Skalny A, Santamaria A, Buha-Đorđević A, Tizabi Y, Jiang Y, Lu R, Virgolini MB, Tinkov AA. From mechanisms to implications: understanding the molecular neurotoxicity of titanium dioxide nanoparticles. Front Biosci-Landmark. 2023;28:1–21. DOI
Filippov SK, Khusnutdinov R, Murmiliuk A, Inam W, Zakharova LY, Zhang H, Khutoryanskiy VV. Dynamic light scattering and transmission electron microscopy in drug delivery: a roadmap for correct characterization of nanoparticles and interpretation of results. Mater Horiz. 2023;10:5354–70. PubMed DOI
Malatesta M. Transmission electron microscopy as a powerful tool to investigate the interaction of nanoparticles with subcellular structures. Int J Mol Sci. 2021;22: 12789. PubMed DOI PMC
Prasad RD, Prasad NR, Prasad N, Prasad SR, Prasad RS, Prasad RB, Prasad RR, Prasad RG, Desai C, Vaidya AK. A review on scattering techniques for analysis of nanomaterials and biomaterials. Eng Sci. 2024;33:1332.
Burastero O, Draper-Barr G, Raynal B, Chevreuil M, England P, Garcia Alai M. Raynals, an online tool for the analysis of dynamic light scattering. Acta Crystallogr Sect D Struct Biol. 2023;79:673–83. DOI
Salazar M, Srivastav H, Srivastava A, Srivastava S. A user-friendly graphical user interface for dynamic light scattering data analysis. Soft Matter. 2023;19:6535–44. PubMed DOI
Inkson BJ. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for materials characterization, in Materials characterization using nondestructive evaluation (NDE) methods. Elsevier; 2016. p. 17–43.
Soni U, Desai RP. Analyzing magnetic nanofluid structure. Phys Fluids. 2022. https://doi.org/10.1063/5.0077322 . DOI
Ing G, Stewart A, Battaglia G, Ruiz-Perez L. Simplipytem: an open-source Python library and app to simplify transmission electron microscopy and in situ-TEM image analysis. PLoS ONE. 2023;18: e0285691. PubMed DOI PMC
Day AL, Wahl CB, Dos Reis R, Liao W-K, Dravid VP, Choudhary A, Agrawal A (2024). Automated nanoparticle image processing pipeline for AI-driven materials characterization. In: Proceedings of the 33rd ACM international conference on information and knowledge management; 2024. p. 4462–9.
Larner SF, Wang J, Goodman J, O’Donoghue Altman MB, Xin M, Wang KK. In vitro neurotoxicity resulting from exposure of cultured neural cells to several types of nanoparticles. J Cell Death. 2017;10: 1179670717694523. PubMed DOI PMC
Singh AV, Varma M, Laux P, Choudhary S, Datusalia AK, Gupta N, Luch A, Gandhi A, Kulkarni P, Nath B. Artificial intelligence and machine learning disciplines with the potential to improve the nanotoxicology and nanomedicine fields: a comprehensive review. Arch Toxicol. 2023;97:963–79. PubMed DOI PMC
Desai AS, Bandopadhyaya A, Ashok A, Bhagat N. Decoding characteristics of key physical properties in silver nanoparticles by attaining centroids for cytotoxicity prediction through data cleansing. Mach Learn Sci Technol. 2024;5: 025059. DOI
Papadiamantis AG, Jänes J, Voyiatzis E, Sikk L, Burk J, Burk P, Tsoumanis A, Ha MK, Yoon TH, Valsami-Jones E. Predicting cytotoxicity of metal oxide nanoparticles using Isalos analytics platform. Nanomaterials. 2020;10:2017. PubMed DOI PMC
Helmbrecht H, Xu N, Liao R, Nance E. Data management schema design for effective nanoparticle formulation for neurotherapeutics. AIChE J. 2021;67: e17459. PubMed DOI PMC
Shirokii N, Din Y, Petrov I, Seregin Y, Sirotenko S, Razlivina J, Serov N, Vinogradov V. Quantitative prediction of inorganic nanomaterial cellular toxicity via machine learning. Small. 2023;19: 2207106. DOI
Kumar S, Singh SK, Gupta Y, Bajpai V, Tiwari P. Brain tumour MRI image segmentation and classification using FCNN. In: soft computing for security applications: Proceedings of ICSCS 2021. Springer; 2022. p. 323–9.
Berks M, Parker G, Little R, Cheung S. Madym: a C++ toolkit for quantitative dce-MRI analysis. J Open Source Softw. 2021. https://doi.org/10.21105/joss.03523 . DOI
Agarwal M, Georgiadis J, Pelegri AA. Data-driven depiction of aging related physiological volume shrinkage in brain white matter: an image processing based three-dimensional micromechanical model. J Eng Sci Med Diagn Ther. 2025. https://doi.org/10.1115/1.4067393 . DOI
Zanovello U, Seifert F, Bottauscio O, Winter L, Zilberti L, Ittermann B. CoSimPy: an open-source python library for MRI radiofrequency coil EM/circuit cosimulation. Comput Methods Progr Biomed. 2022;216: 106684. DOI
Zhuang M, Chen Z, Wang H, Tang H, He J, Qin B, Yang Y, Jin X, Yu M, Jin B. Anatomysketch: an extensible open-source software platform for medical image analysis algorithm development. J Digit Imaging. 2022;35:1623–33. PubMed DOI PMC
Agarwal SK, Gupta YK. A study of tools, techniques and language for the implementation of algorithm for brain tumor detection. In: AIP conference Proceedings, vol 296. AIP Publishing; 2023.
Saifullah S, Dreżewski R, Yudhana A. Advanced brain tumor segmentation using DeepLabV3Plus with Xception encoder on a multi-class MR image dataset. Multimed Tools Appl. 2025:1–22.
Jiao J, Heeman F, Dixon R, Wimberley C, Lopes Alves I, Gispert JD, Lammertsma AA, van Berckel BN, da Costa-Luis C, Markiewicz P. NiftyPAD-novel Python package for quantitative analysis of dynamic PET data. Neuroinformatics. 2023;21:457–68. PubMed DOI PMC
Mureddu M, Funck T, Morana G, Rossi A, Ramaglia A, Milanaccio C, Verrico A, Bottoni G, Fiz F, Piccardo AA. New tool for extracting static and dynamic parameters from [ PubMed DOI PMC
Perlo D, Kanli G, Boudissa S, Keunen O. Multi-parametric MRI to FMISO PET synthesis for hypoxia prediction in brain tumors. In: Mukhopadhyay A, Oksuz I, Engelhardt S, Mehrof D, Yuan Y, editors. MICCAI workshop on deep generative models. Springer; 2024. p. 119–28.
Jesuraj A. Enhancing image segmentation process in human organs using Python. Int J Emerg Trends Comput Sci Inf Technol. 2024;5:1–12.
Hssayeni M, Croock M, Salman A, Al-khafaji H, Yahya Z, Ghoraani B. Computed tomography images for intracranial hemorrhage detection and segmentation. Intracranial hemorrhage segmentation using a deep convolutional model. Data. 2020;5:14. DOI
Wang Y, Wang H, Shen K, Chang J, Cui J. Brain CT image segmentation based on 3D slicer. J Complex Health Sci. 2020;3:34–42. DOI
Chatterjee I, Moradikor N. Integrating neuroimaging, computational neuroscience, and artificial intelligence. Boca Raton: CRC Press; 2024. DOI
Umbaugh SE. Digital image processing and analysis: computer vision and image analysis. Boca Raton: CRC Press; 2023.
Nichols JA, Herbert Chan HW, Baker MA. Machine learning: applications of artificial intelligence to imaging and diagnosis. Biophys Rev. 2019;11:111–8. PubMed DOI
Archana R, Jeevaraj PE. Deep learning models for digital image processing: a review. Artif Intell Rev. 2024;57:11. DOI
Valente J, António J, Mora C, Jardim S. Developments in image processing using deep learning and reinforcement learning. J Imaging. 2023;9:207. PubMed DOI PMC
Tchito Tchapga C, Mih TA, Tchagna Kouanou A, Fozin Fonzin T, Kuetche Fogang P, Mezatio BA, Tchiotsop D. Biomedical image classification in a big data architecture using machine learning algorithms. J Healthc Eng. 2021;2021: 2021: 9998819. PubMed DOI PMC
Naeem S, Ali A, Anam S, Ahmed MM. An unsupervised machine learning algorithms: comprehensive review. Int J Comput Digit Syst. 2023. https://doi.org/10.12785/ijcds/130172 . DOI
Li X, Li C, Rahaman MM, Sun H, Li X, Wu J, Yao Y, Grzegorzek M. A comprehensive review of computer-aided whole-slide image analysis: from datasets to feature extraction, segmentation, classification and detection approaches. Artif Intell Rev. 2022;55:4809–78. DOI
Sun Z, Shi J, Wang J, Jiang M, Wang Z, Bai X, Wang X. A deep learning-based framework for automatic analysis of the nanoparticle morphology in SEM/TEM images. Nanoscale. 2022;14:10761–72. PubMed DOI
Bals J, Epple M. Deep learning for automated size and shape analysis of nanoparticles in scanning electron microscopy. RSC Adv. 2023;13:2795–802. PubMed DOI PMC
Furxhi I, Murphy F. Predicting in vitro neurotoxicity induced by nanoparticles using machine learning. Int J Mol Sci. 2020;21: 5280. PubMed DOI PMC
Bilgi E, Karakus CO. Machine learning-assisted prediction of the toxicity of silver nanoparticles: a meta-analysis. J Nanopart Res. 2023;25:157. DOI
Yu H, Zhao Z, Cheng F. Predicting and investigating cytotoxicity of nanoparticles by translucent machine learning. Chemosphere. 2021;276: 130164. PubMed DOI
Conti A, Campagnolo L, Diciotti S, Pietroiusti A, Toschi N. Predicting the cytotoxicity of nanomaterials through explainable, extreme gradient boosting. Nanotoxicology. 2022;16:844–56. PubMed DOI
Banerjee A, Kar S, Pore S, Roy K. Efficient predictions of cytotoxicity of TiO2-based multi-component nanoparticles using a machine learning-based q-RASAR approach. Nanotoxicology. 2023;17:78–93. PubMed DOI
Luo H, Zhang T, Gong N-J, Tamir J, Venkata SP, Xu C, Duan Y, Zhou T, Zhou F, Zaharchuk G. Deep learning–based methods may minimize GBCA dosage in brain MRI. Eur Radiol. 2021;31:6419–28. PubMed DOI
Mudali D, Jeevanandam J, Danquah MK. Probing the characteristics and biofunctional effects of disease-affected cells and drug response via machine learning applications. Crit Rev Biotechnol. 2020;40:951–77. PubMed DOI
Chattopadhyay A, Maitra M. MRI-based brain tumour image detection using CNN based deep learning method. Neurosci Inform. 2022;2: 100060. DOI
Shu ZY, Cui SJ, Wu X, Xu Y, Huang P, Pang PP, Zhang M. Predicting the progression of Parkinson’s disease using conventional MRI and machine learning: an application of radiomic biomarkers in whole-brain white matter. Magn Reson Med. 2021;85:1611–24. PubMed DOI
Stéen EJL, Vugts DJ, Windhorst AD. The application of in silico methods for prediction of blood-brain barrier permeability of small molecule PET tracers. Front Nucl Med. 2022;2: 853475. PubMed DOI PMC
Sanaat A, Shiri I, Arabi H, Mainta I, Nkoulou R, Zaidi H. Deep learning-assisted ultra-fast/low-dose whole-body PET/CT imaging. Eur J Nucl Med Mol Imaging. 2021;48:2405–15. PubMed DOI PMC
Pease M, Arefan D, Barber J, Yuh E, Puccio A, Hochberger K, Nwachuku E, Roy S, Casillo S, Temkin N. Outcome prediction in patients with severe traumatic brain injury using deep learning from head CT scans. Radiology. 2022;304:385–94. PubMed DOI
Duan L, Li X, Ji R, Hao Z, Kong M, Wen X, Guan F, Ma S. Nanoparticle-based drug delivery systems: an inspiring therapeutic strategy for neurodegenerative diseases. Polymers. 2023;15: 2196. PubMed DOI PMC
Vissers C, Ming G-l, Song H. Nanoparticle technology and stem cell therapy team up against neurodegenerative disorders. Adv Drug Deliv Rev. 2019;148:239–51. PubMed DOI PMC
Wahengbam GS, Nirmal S, Nandwana J, Kar S, Kumari V, Mishra R, Singh A. Polymeric nanoparticles revolutionizing brain cancer therapy: a comprehensive review of strategies and advances. Crit Rev Ther Drug Carrier Syst. 2025. https://doi.org/10.1615/CritRevTherDrugCarrierSyst.2024051822 . PubMed DOI
Dhariwal R, Jain M, Mir YR, Singh A, Jain B, Kumar P, Tariq M, Verma D, Deshmukh K, Yadav VK. Targeted drug delivery in neurodegenerative diseases: the role of nanotechnology. Front Med. 2025;12: 1522223. DOI
Afolayan JO, Adebiyi MO, Arowolo MO, Chakraborty C, Adebiyi AA. Breast cancer detection using particle swarm optimization and decision tree machine learning technique. In: Afolayan JO, Adebiyi MO, Arowolo MO, Chakraborty C, Adebiyi AA, editors. Intelligent healthcare: infrastructure, algorithms and management. Springer; 2022. p. 61–83. DOI
Goel A, Goel AK, Kumar A. The role of artificial neural network and machine learning in utilizing spatial information. Spat Inf Res. 2023;31:275–85. DOI
Wang P, Fan E, Wang P. Comparative analysis of image classification algorithms based on traditional machine learning and deep learning. Pattern Recogn Lett. 2021;141:61–7. DOI
Dou B, Zhu Z, Merkurjev E, Ke L, Chen L, Jiang J, Zhu Y, Liu J, Zhang B, Wei G-W. Machine learning methods for small data challenges in molecular science. Chem Rev. 2023;123:8736–80. PubMed DOI PMC
Choudhary K, DeCost B, Chen C, Jain A, Tavazza F, Cohn R, Park CW, Choudhary A, Agrawal A, Billinge SJ. Recent advances and applications of deep learning methods in materials science. npj Comput Mater. 2022;8: 59. DOI
Choi YK, Kern NR, Kim S, Kanhaiya K, Afshar Y, Jeon SH, Jo S, Brooks BR, Lee J, Tadmor EB. CHARMM-GUI nanomaterial modeler for modeling and simulation of nanomaterial systems. J Chem Theory Comput. 2021;18:479–93. PubMed DOI PMC
Tsukanov AA, Turk B, Vasiljeva O, Psakhie SG. Computational indicator approach for assessment of nanotoxicity of two-dimensional nanomaterials. Nanomaterials. 2022;12:650. PubMed DOI PMC
Rahmani R, Lyubartsev AP. Biomolecular adsorprion at ZnS nanomaterials: a molecular dynamics simulation study of the adsorption preferences, effects of the surface curvature and coating. Nanomaterials. 2023;13:2239. PubMed DOI PMC
Woo J, Kim SH, Han K, Choi M. Characterization of dynamics and information processing of integrate-and-fire neuron models. J Phys A Math Theor. 2021;54: 445601. DOI
Uwate Y, Nishio Y, Obien MEJ, Frey U. Local and global activities of Izhikevich neuron model in networks. In: 2021 18th international SoC design conference (ISOCC). IEEE; 2021. p. 219–20.
Schirner M, Domide L, Perdikis D, Triebkorn P, Stefanovski L, Pai R, Prodan P, Valean B, Palmer J, Langford C. Brain simulation as a cloud service: the virtual brain on EBRAINS. Neuroimage. 2022;251: 118973. PubMed DOI
Gholampour S, Fatouraee N. Boundary conditions investigation to improve computer simulation of cerebrospinal fluid dynamics in hydrocephalus patients. Commun Biol. 2021;4:394. PubMed DOI PMC
Nandipati M, Fatoki O, Desai S. Bridging nanomanufacturing and artificial intelligence—a comprehensive review. Materials. 2024;17:1621. PubMed DOI PMC
Philip AK, Samuel BA, Bhatia S, Khalifa SA, El-Seedi HR. Artificial intelligence and precision medicine: a new frontier for the treatment of brain tumors. Life. 2022;13:24. PubMed DOI PMC
Himeur Y, Elnour M, Fadli F, Meskin N, Petri I, Rezgui Y, Bensaali F, Amira A. AI-big data analytics for building automation and management systems: a survey, actual challenges and future perspectives. Artif Intell Rev. 2023;56:4929–5021. PubMed DOI
Botifoll M, Pinto-Huguet I, Arbiol J. Machine learning in electron microscopy for advanced nanocharacterization: current developments, available tools and future outlook. Nanoscale Horiz. 2022;7:1427–77. PubMed DOI
Lu S, Jayaraman A. Machine learning for analyses and automation of structural characterization of polymer materials. Prog Polym Sci. 2024. https://doi.org/10.1016/j.progpolymsci.2024.101828 . PubMed DOI
Alshawwa SZ, Kassem AA, Farid RM, Mostafa SK, Labib GS. Nanocarrier drug delivery systems: characterization, limitations, future perspectives and implementation of artificial intelligence. Pharmaceutics. 2022;14:883. PubMed DOI PMC
Yan X, Yue T, Winkler DA, Yin Y, Zhu H, Jiang G, Yan B. Converting nanotoxicity data to information using artificial intelligence and simulation. Chem Rev. 2023;123:8575–637. PubMed DOI
Srivastava A, Hanig JP. Quantitative neurotoxicology: potential role of artificial intelligence/deep learning approach. J Appl Toxicol. 2021;41:996–1006. PubMed DOI
Haghshenas Z, Bidaki N, Rashtbarzadeh A, Nazari E, Rezaei-Tavirani M. Impact of heavy metals on Alzheimer disease, using artificial intelligence. Int J Med Toxicol Forensic Med. 2024;14: E45529. DOI
Ali H. AI in neurodegenerative disease research: early detection, cognitive decline prediction, and brain imaging biomarker identification. Int J Eng Technol Res Manag. 2022;6:71.
Yao Z, Wang H, Yan W, Wang Z, Zhang W, Wang Z, Zhang G. Artificial intelligence-based diagnosis of Alzheimer’s disease with brain MRI images. Eur J Radiol. 2023;165: 110934. PubMed DOI
Mathur S, Jaiswal A. Demystifying the role of artificial intelligence in neurodegenerative diseases. In: Gaur L, Abraham A, Ajith R, editors. AI and neuro-degenerative diseases: insights and solutions. Springer; 2024. p. 1–33.
Secara I-A, Hordiiuk D. Personalized health monitoring systems: integrating wearable and AI. J Intell Learn Syst Appl. 2024;16:44–52.
Manickam P, Mariappan SA, Murugesan SM, Hansda S, Kaushik A, Shinde R, Thipperudraswamy S. Artificial intelligence (AI) and internet of medical things (IoMT) assisted biomedical systems for intelligent healthcare. Biosensors. 2022;12:562. PubMed DOI PMC
Laghari AA, Wu K, Laghari RA, Ali M, Khan AA. A review and state of art of Internet of Things (IoT). Arch Comput Methods Eng. 2022;29:1395–413. DOI
Warraich HJ, Tazbaz T, Califf RM. FDA perspective on the regulation of artificial intelligence in health care and biomedicine. JAMA. 2025;333:241–7. PubMed DOI
Palaniappan K, Lin YET, Vogel S. Global regulatory frameworks for the use of artificial intelligence (AI) in the healthcare services sector. Healthcare. 2024;12:562. PubMed DOI PMC
Jiménez-Sánchez A, Avlona N-R, de Boer S, Campello VM, Feragen A, Ferrante E, Ganz M, Gichoya JW, Gonzalez C, Groefsema S. In the picture: medical imaging datasets, artifacts, and their living review. In: Proceedings of the 2025 ACM conference on fairness, accountability, and transparency. 2025. p. 511–31.
Ronzetti M, Simeonov A. A comprehensive update on the application of high-throughput fluorescence imaging for novel drug discovery. Expert Opin Drug Discov. 2025;20:785–97. PubMed DOI
Sher N, Ahmed M, Mushtaq N. Biogenic synthesis of gold nanoparticles using Heliotropium eichwaldi L and neuroprotective potential via anticholinesterase inhibition in rat brain. Appl Organomet Chem. 2023;37: e7000. DOI
Al-Radadi NS, Al-Bishri WM, Salem NA, ElShebiney SA. Plant-mediated green synthesis of gold nanoparticles using an aqueous extract of Passiflora ligularis, optimization, characterizations, and their neuroprotective effect on propionic acid-induced autism in Wistar rats. Saudi Pharm J. 2024;32: 101921. PubMed DOI
Alkhalaf MI, Hussein RH, Hamza A. Green synthesis of silver nanoparticles by Nigella sativa extract alleviates diabetic neuropathy through anti-inflammatory and antioxidant effects. Saudi J Biol Sci. 2020;27:2410–9. PubMed DOI PMC
Li L, Li L, Zhou X, Yu Y, Li Z, Zuo D, Wu Y. Silver nanoparticles induce protective autophagy via Ca2+/CaMKKβ/AMPK/mTOR pathway in SH-SY5Y cells and rat brains. Nanotoxicology. 2019;13:369–91. PubMed DOI
Lemus-De la Cruz J, Trejo-Hurtado M, Landa-Moreno C, Peña-Montes D, Landeros-Páramo JL, Cortés-Rojo C, Montoya-Pérez R, Rosas G, Saavedra-Molina A. Antioxidant effects of silver nanoparticles obtained by green synthesis from the aqueous extract of Eryngium carlinae on the brain mitochondria of streptozotocin-induced diabetic rats. J Bioenerg Biomembr. 2023;55:123–35. PubMed DOI
Wahle T, Sofranko A, Dekkers S, Miller MR, Heusinkveld HJ, Albrecht C, Cassee FR, Schins RP. Evaluation of neurological effects of cerium dioxide nanoparticles doped with different amounts of zirconium following inhalation exposure in mouse models of Alzheimer’s and vascular disease. Neurochem Int. 2020;138: 104755. PubMed DOI PMC
Patel V, Shah J. Anti-cancer and neuroprotective effects of conjugated graphene quantum dot in brain tumor-bearing rat model. Nano Express. 2023;4: 045010. DOI
Raghavan A, Radhakrishnan M, Soren K, Wadnerkar P, Kumar A, Chakravarty S, Ghosh S. Biological evaluation of graphene quantum dots and nitrogen-doped graphene quantum dots as neurotrophic agents. ACS Appl Bio Mater. 2023;6:2237–47. PubMed DOI
Raghavan A, Tripathy C, Radhakrishnan M, Chakravarty S, Ghosh S. Potential of zinc oxide-graphene quantum dots and zinc oxide-nitrogen-doped graphene quantum dot nanocomposites as neurotrophic agents. ACS Appl Bio Mater. 2023;6:4208–16. PubMed DOI