Nanostructured Dual-Delivery System with Antioxidant and Synergistic Approach for Targeted Dermal Treatment
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
FCH-S-24-8526
Internal Grant Agency of the Brno University of Technology
PubMed
41096752
PubMed Central
PMC12525100
DOI
10.3390/ijms26199485
PII: ijms26199485
Knihovny.cz E-zdroje
- Klíčová slova
- antimicrobial and antioxidant agents, liposomes, nanofibres, phytochemicals, polyhydroxybutyrate, synergism, wound healing,
- MeSH
- antibakteriální látky farmakologie chemie MeSH
- antioxidancia * farmakologie chemie aplikace a dávkování MeSH
- buněčné linie keratinocytů HaCaT MeSH
- buněčné linie MeSH
- eugenol farmakologie MeSH
- hojení ran účinky léků MeSH
- hydroxybutyráty chemie MeSH
- keratinocyty účinky léků MeSH
- lékové transportní systémy * MeSH
- lidé MeSH
- liposomy chemie MeSH
- mikrobiální testy citlivosti MeSH
- nanostruktury * chemie MeSH
- nanovlákna chemie MeSH
- polyestery chemie MeSH
- polyhydroxybutyráty MeSH
- Pseudomonas aeruginosa účinky léků MeSH
- synergismus léků MeSH
- thymol farmakologie MeSH
- viabilita buněk účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky MeSH
- antioxidancia * MeSH
- eugenol MeSH
- hydroxybutyráty MeSH
- liposomy MeSH
- poly-beta-hydroxybutyrate MeSH Prohlížeč
- polyestery MeSH
- polyhydroxybutyráty MeSH
- thymol MeSH
Biocompatible nanofibrous dressings integrating bioactive compounds with antioxidative and antimicrobial properties offer a promising solution for effective wound healing. In the presented study, we developed a novel dual-delivery system by combining forcespun nanofibres with poly(3-hydroxybutyrate) (PHB)-liposomes to enhance bioavailability and enable targeted release of bioactive agents (eugenol, thymol, curcumin, ampicillin, streptomycin, gentamicin). These agents exhibited notable antioxidant activity (2.27-2.33 mmol TE/g) and synergistic or partially synergistic antimicrobial effects against E. coli, M. luteus, S. epidermidis, and P. aeruginosa ( Fractional Inhibitory Concentration index 0.09-0.73). The most potent combinations, particularly thymol, eugenol, and ampicillin, were encapsulated in the nanofibre-liposomal matrix. The successful preparation of a new combined delivery system was confirmed by structural analysis using Electron and Fluorescence Microscopy. The dual-composite materials retained the antimicrobial properties of the individual compounds upon release, with the highest increases of ~73.56% against S. epidermidis. Cell viability and in vitro immunology assays using the human keratinocyte cell line (HaCaT) showed a slight decrease in viability and immune response stimulation, while not impairing wound re-epithelisation. These findings highlight the potential of firstly reported novel carrier utilising both PHB-nanofibres and PHB-liposomes, exhibiting simultaneous antioxidant and antimicrobial activity as promising candidates for the treatment of infected wounds under oxidative stress.
Zobrazit více v PubMed
Dhivya S., Padma V.V., Santhini E. Wound Dressings—A Review. Biomedicine. 2015;5:24–28. doi: 10.7603/s40681-015-0022-9. PubMed DOI PMC
Popescu V., Cauni V., Petrutescu M.S., Rustin M.M., Bocai R., Turculet C.R., Doran H., Patrascu T., Lazar A.M., Cretoiu D., et al. Chronic Wound Management: From Gauze to Homologous Cellular Matrix. Biomedicines. 2023;11:2457. doi: 10.3390/biomedicines11092457. PubMed DOI PMC
Kota S., Dumpala P., Sajja R., Anantha R. Advancements in Wound Care: A Review of Electrospun Nanofibrous Dressings Enriched with Phytoconstituents. Ann. Chim. Sci. Mater. 2024;48:269–279. doi: 10.18280/acsm.480213. DOI
Swanson T., Ousey K., Haesler E., Bjarnsholt T., Carville K., Idensohn P., Kalan L., Keast D.H., Larsen D., Percival S., et al. IWII Wound Infection in Clinical Practice Consensus Document: 2022 Update. J. Wound Care. 2022;31:S10–S21. doi: 10.12968/jowc.2022.31.Sup12.S10. PubMed DOI
Tipton C.D., Wolcott R.D., Sanford N.E., Miller C., Pathak G., Silzer T.K., Sun J., Fleming D., Rumbaugh K.P., Little T.D., et al. Patient Genetics Is Linked to Chronic Wound Microbiome Composition and Healing. PLoS Pathog. 2020;16:e1008511. doi: 10.1371/journal.ppat.1008511. PubMed DOI PMC
Punjataewakupt A., Napavichayanun S., Aramwit P. The Downside of Antimicrobial Agents for Wound Healing. Eur. J. Clin. Microbiol. Infect. Dis. 2019;38:39–54. doi: 10.1007/s10096-018-3393-5. PubMed DOI
Stefanović O.D. Bacterial Pathogenesis and Antibacterial Control. IntechOpen; London, UK: 2018. Synergistic Activity of Antibiotics and Bioactive Plant Extracts: A Study Against Gram-Positive and Gram-Negative Bacteria. DOI
Khameneh B., Iranshahy M., Soheili V., Fazly Bazzaz B.S. Review on Plant Antimicrobials: A Mechanistic Viewpoint. Antimicrob. Resist. Infect. Control. 2019;8:118. doi: 10.1186/s13756-019-0559-6. PubMed DOI PMC
Fancello F., El Beyrouthy M., Iriti M., El Khoury M., Bou Zeidan M., Zara S. Chemical Composition and Antimicrobial Activity against Food-Related Microorganisms of Different Essential Oils from Lebanon. J. Food Saf. 2019;39:e12688. doi: 10.1111/jfs.12688. DOI
Kumarihamy M., Tripathi S.K., Khan S., Muhammad I. Schottiin, a New Prenylated Isoflavones from Psorothamnus Schottii and Antibacterial Synergism Studies between Methicillin and Fremontone against Methicillin-Resistant Staphylococcus Aureus ATCC 1708. Nat. Prod. Res. 2022;36:2984–2992. doi: 10.1080/14786419.2021.1937157. PubMed DOI
Shang Z., Sharma V., Kumar T., Dev K., Patil S. Phytochemical Characterization and Synergistic Antibacterial Effects of Colebrookea Oppositifolia Essential Oil as Adjuvants to Modern Antibiotics in Combating Drug Resistance. Drug Des. Dev. Ther. 2024;18:4601. doi: 10.2147/DDDT.S489517. PubMed DOI PMC
Ngolo L.M., Faraja F.M., Ngandu O.K., Kapepula P.M., Mutombo S.M., Tshitenge T.B. Phytochemical Screening, UPLC Analysis, Evaluation of Synergistic Antioxidant and Antibacterial Efficacy of Three Medicinal Plants Used in Kinshasa, D.R. Congo. Sci. Rep. 2025;15:10083. doi: 10.1038/s41598-025-94301-w. PubMed DOI PMC
Saeed F., Afzaal M., Tufail T., Ahmad A. Active Antimicrobial Food Packaging. IntechOpen; London, UK: 2019. Use of Natural Antimicrobial Agents: A Safe Preservation Approach.
Lee J.S., Choi Y.S., Lee H.G. Synergistic Antimicrobial Properties of Nanoencapsulated Clove Oil and Thymol against Oral Bacteria. Food Sci. Biotechnol. 2020;29:1597–1604. doi: 10.1007/s10068-020-00803-w. PubMed DOI PMC
El-Mahdy A.M., Alqahtani M., Almukainzi M., Alghoribi M.F., Abdel-Rhman S.H. Effect of Resveratrol and Curcumin on Gene Expression of Methicillin-Resistant Staphylococcus Aureus (MRSA) Toxins. J. Microbiol. Biotechnol. 2023;34:141. doi: 10.4014/jmb.2309.09001. PubMed DOI PMC
Hemaiswarya S., Doble M. Synergistic Interaction of Eugenol with Antibiotics against Gram Negative Bacteria. Phytomedicine. 2009;16:997–1005. doi: 10.1016/j.phymed.2009.04.006. PubMed DOI
Mun S.H., Joung D.K., Kim Y.S., Kang O.H., Kim S.B., Seo Y.S., Kim Y.C., Lee D.S., Shin D.W., Kweon K.T., et al. Synergistic Antibacterial Effect of Curcumin against Methicillin-Resistant Staphylococcus Aureus. Phytomedicine. 2013;20:714–718. doi: 10.1016/j.phymed.2013.02.006. PubMed DOI
Miladi H., Zmantar T., Kouidhi B., Al Qurashi Y.M.A., Bakhrouf A., Chaabouni Y., Mahdouani K., Chaieb K. Synergistic Effect of Eugenol, Carvacrol, Thymol, p-Cymene and γ-Terpinene on Inhibition of Drug Resistance and Biofilm Formation of Oral Bacteria. Microb. Pathog. 2017;112:156–163. doi: 10.1016/j.micpath.2017.09.057. PubMed DOI
Zhao L., Hao X. Evaluation of Bactericidal Activity of Thymol-Eugenol Solution as a Potential Disinfectant Agent. Biomed. Res. 2017;28:797–801.
Mitra S., Tareq A.M., Das R., Emran T.B., Nainu F., Chakraborty A.J., Ahmad I., Tallei T.E., Idris A.M., Simal-Gandara J. Polyphenols: A First Evidence in the Synergism and Bioactivities. Food Rev. Int. 2022;39:4419–4441. doi: 10.1080/87559129.2022.2026376. DOI
Johnson J.B., Broszczak D.A., Mani J.S., Anesi J., Naiker M. A Cut above the Rest: Oxidative Stress in Chronic Wounds and the Potential Role of Polyphenols as Therapeutics. J. Pharm. Pharmacol. 2022;74:485–502. doi: 10.1093/jpp/rgab038. PubMed DOI
Sylvester M.A., Amini F., Keat T.C. Electrospun Nanofibers in Wound Healing. Mater. Today Proc. 2020;29:1–6. doi: 10.1016/j.matpr.2020.05.686. DOI
Kenry, Lim C.T. Nanofiber Technology: Current Status and Emerging Developments. Prog. Polym. Sci. 2017;70:1–17. doi: 10.1016/j.progpolymsci.2017.03.002. DOI
Victoria Schulte-Werning L., Singh B., Johannessen M., Einar Engstad R., Mari Holsæter A. Antimicrobial Liposomes-in-Nanofiber Wound Dressings Prepared by a Green and Sustainable Wire-Electrospinning Set-Up. Int. J. Pharm. 2024;657:124136. doi: 10.1016/J.IJPHARM.2024.124136. PubMed DOI
Zahedi P., Rezaeian I., Ranaei-Siadat S.-O., Jafari S.-H., Supaphol P. A Review on Wound Dressings with an Emphasis on Electrospun Nanofibrous Polymeric Bandages. Polym. Adv. Technol. 2009;21:77–95. doi: 10.1002/pat.1625. DOI
Marjuban S.M.H., Rahman M., Duza S.S., Ahmed M.B., Patel D.K., Rahman M.S., Lozano K. Recent Advances in Centrifugal Spinning and Their Applications in Tissue Engineering. Polymers. 2023;15:1253. doi: 10.3390/polym15051253. PubMed DOI PMC
Casula L., Zidar A., Kristl J., Jeras M., Kralj S., Fadda A.M., Zupančič Š. Development of Nanofibers with Embedded Liposomes Containing an Immunomodulatory Drug Using Green Electrospinning. Pharmaceutics. 2023;15:1245. doi: 10.3390/pharmaceutics15041245. PubMed DOI PMC
Manuel C.B.J., Jesús V.G.L., Aracely S.M. Electrospinning—Material, Techniques, and Biomedical Applications. IntechOpen; London, UK: 2016. Electrospinning for Drug Delivery Systems: Drug Incorporation Techniques. DOI
Nikmaram N., Roohinejad S., Hashemi S., Koubaa M., Barba F.J., Abbaspourrad A., Greiner R. Emulsion-Based Systems for Fabrication of Electrospun Nanofibers: Food, Pharmaceutical and Biomedical Applications. RSC Adv. 2017;7:28951–28964. doi: 10.1039/C7RA00179G. DOI
Mickova A., Buzgo M., Benada O., Rampichova M., Fisar Z., Filova E., Tesarova M., Lukas D., Amler E. Core/Shell Nanofibers with Embedded Liposomes as a Drug Delivery System. Biomacromolecules. 2012;13:952–962. doi: 10.1021/bm2018118. PubMed DOI
Lai F., Caddeo C., Manca M.L., Manconi M., Sinico C., Fadda A.M. What’s New in the Field of Phospholipid Vesicular Nanocarriers for Skin Drug Delivery. Int. J. Pharm. 2020;583:119398. doi: 10.1016/j.ijpharm.2020.119398. PubMed DOI
Ternullo S., de Weerd L., Holsæter A.M., Flaten G.E., Škalko-Basnet N. Going Skin Deep: A Direct Comparison of Penetration Potential of Lipid-Based Nanovesicles on the Isolated Perfused Human Skin Flap Model. Eur. J. Pharm. Biopharm. 2017;121:14–23. doi: 10.1016/j.ejpb.2017.09.006. PubMed DOI
Monteiro N., Martins M., Martins A., Fonseca N.A., Moreira J.N., Reis R.L., Neves N.M. Antibacterial Activity of Chitosan Nanofiber Meshes with Liposomes Immobilized Releasing Gentamicin. Acta Biomater. 2015;18:196–205. doi: 10.1016/j.actbio.2015.02.018. PubMed DOI
Monteiro N., Martins A., Pires R., Faria S., Fonseca N.A., Moreira J.N., Reis R.L., Neves N.M. Immobilization of Bioactive Factor-Loaded Liposomes on the Surface of Electrospun Nanofibers Targeting Tissue Engineering. Biomater. Sci. 2014;2:1195–1209. doi: 10.1039/C4BM00069B. PubMed DOI
Pires F., Santos J.F., Bitoque D., Silva G.A., Marletta A., Nunes V.A., Ribeiro P.A., Silva J.C., Raposo M. Polycaprolactone/Gelatin Nanofiber Membranes Containing EGCG-Loaded Liposomes and Their Potential Use for Skin Regeneration. ACS Appl. Bio Mater. 2019;2:4790–4800. doi: 10.1021/acsabm.9b00524. PubMed DOI
Zhijiang C., Yi X., Haizheng Y., Jia J., Liu Y. Poly(Hydroxybutyrate)/Cellulose Acetate Blend Nanofiber Scaffolds: Preparation, Characterization and Cytocompatibility. Mater. Sci. Eng. C. 2016;58:757–767. doi: 10.1016/j.msec.2015.09.048. PubMed DOI
Meischel M., Eichler J., Martinelli E., Karr U., Weigel J., Schmöller G., Tschegg E.K., Fischerauer S., Weinberg A.M., Stanzl-Tschegg S.E. Adhesive Strength of Bone-Implant Interfaces and in-Vivo Degradation of PHB Composites for Load-Bearing Applications. J. Mech. Behav. Biomed. Mater. 2016;53:104–118. doi: 10.1016/j.jmbbm.2015.08.004. PubMed DOI
Yeo J.C.C., Muiruri J.K., Thitsartarn W., Li Z., He C. Recent Advances in the Development of Biodegradable PHB-Based Toughening Materials: Approaches, Advantages and Applications. Mater. Sci. Eng. C. 2018;92:1092–1116. doi: 10.1016/j.msec.2017.11.006. PubMed DOI
Bokrova J., Marova I., Matouskova P., Pavelkova R. Fabrication of Novel PHB-Liposome Nanoparticles and Study of Their Toxicity in Vitro. J. Nanopart. Res. 2019;21:49. doi: 10.1007/s11051-019-4484-7. DOI
Pavelkova R., Matouskova P., Hoova J., Porizka J., Marova I. Preparation and Characterisation of Organic UV Filters Based on Combined PHB/Liposomes with Natural Phenolic Compounds. J. Biotechnol. 2020;324:100021. doi: 10.1016/j.btecx.2020.100021. PubMed DOI
Kundrat V., Cernekova N., Kovalcik A., Enev V., Marova I. Drug Release Kinetics of Electrospun PHB Meshes. Materials. 2019;12:1924. doi: 10.3390/ma12121924. PubMed DOI PMC
Foster L.J.R., Tighe B.J. In Vitro Hydrolytic Degradation of Centrifugally Spun Polyhydroxybutyrate-Pectin Composite Fibres. Polym. Int. 2009;58:1442–1451. doi: 10.1002/pi.2682. DOI
Figueroa-Lopez K.J., Cabedo L., Lagaron J.M., Torres-Giner S. Development of Electrospun Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate) Monolayers Containing Eugenol and Their Application in Multilayer Antimicrobial Food Packaging. Front. Nutr. 2020;7:140. doi: 10.3389/fnut.2020.00140. PubMed DOI PMC
Figueroa-Lopez K.J., Vicente A.A., Reis M.A.M., Torres-Giner S., Lagaron J.M. Antimicrobial and Antioxidant Performance of Various Essential Oils and Natural Extracts and Their Incorporation into Biowaste Derived Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate) Layers Made from Electrospun Ultrathin Fibers. Nanomaterials. 2019;9:144. doi: 10.3390/nano9020144. PubMed DOI PMC
Narayanan A., Neera, Mallesha, Ramana K.V. Synergized Antimicrobial Activity of Eugenol Incorporated Polyhydroxybutyrate Films against Food Spoilage Microorganisms in Conjunction with Pediocin. Appl. Biochem. Biotechnol. 2013;170:1379–1388. doi: 10.1007/s12010-013-0267-2. PubMed DOI
Rhim J.W., Ng P.K.W. Natural Biopolymer-Based Nanocomposite Films for Packaging Applications. Crit. Rev. Food Sci. Nutr. 2007;47:411–433. doi: 10.1080/10408390600846366. PubMed DOI
Palmieri F., Tagoe J.N.A., Di Maio L. Development of PBS/Nano Composite PHB-Based Multilayer Blown Films with Enhanced Properties for Food Packaging Applications. Materials. 2024;17:2894. doi: 10.3390/ma17122894. PubMed DOI PMC
Pavelková R., Plachá M., Tarageľ M., Bendová A., Matoušková P., Márová I. Application of Phb-Liposome Particles and Nanofibers in Cosmetics; Proceedings of the NANOCON Conference Proceedings—International Conference on Nanomaterials; Brno, Czech Republic. 16–18 October 2019; pp. 514–519. DOI
Hunt M., Torres M., Bachar-Wikstrom E., Wikstrom J.D. Cellular and Molecular Roles of Reactive Oxygen Species in Wound Healing. Commun. Biol. 2024;7:1534. doi: 10.1038/s42003-024-07219-w. PubMed DOI PMC
Lam M.M.C., Wick R.R., Watts S.C., Cerdeira L.T., Wyres K.L., Holt K.E. A Genomic Surveillance Framework and Genotyping Tool for Klebsiella Pneumoniae and Its Related Species Complex. Nat. Commun. 2021;12:4188. doi: 10.1038/s41467-021-24448-3. PubMed DOI PMC
Yakobi S.H., Nwodo U.U. Prevalence of Antimicrobial Resistance in Klebsiella Pneumoniae in the South African Populations: A Systematic Review and Meta-Analysis of Surveillance Studies. Microbiologyopen. 2025;14:e70037. doi: 10.1002/mbo3.70037. PubMed DOI PMC
Elfadadny A., Ragab R.F., AlHarbi M., Badshah F., Ibáñez-Arancibia E., Farag A., Hendawy A.O., De los Ríos-Escalante P.R., Aboubakr M., Zakai S.A., et al. Antimicrobial Resistance of Pseudomonas Aeruginosa: Navigating Clinical Impacts, Current Resistance Trends, and Innovations in Breaking Therapies. Front. Microbiol. 2024;15:1374466. doi: 10.3389/fmicb.2024.1374466. PubMed DOI PMC
Alam S.T., Le T.A.N., Park J.S., Kwon H.C., Kang K. Antimicrobial Biophotonic Treatment of Ampicillin-Resistant Pseudomonas Aeruginosa with Hypericin and Ampicillin Cotreatment Followed by Orange Light. Pharmaceutics. 2019;11:641. doi: 10.3390/pharmaceutics11120641. PubMed DOI PMC
Ukaegbu K., Allen E., Svoboda K.K.H. Reactive Oxygen Species and Antioxidants in Wound Healing: Mechanisms and Therapeutic Potential. Int. Wound J. 2025;22:e70330. doi: 10.1111/iwj.70330. PubMed DOI PMC
Muñoz-Acevedo A., Vargas Méndez L.Y., Stashenko E.E., Kouznetsov V.V. Improved Trolox® Equivalent Antioxidant Capacity Assay for Efficient and Fast Search of New Antioxidant Agents. Anal. Chem. Lett. 2011;1:86–102. doi: 10.1080/22297928.2011.10648207. DOI
Ivanovic J., Dimitrijevic-Brankovic S., Misic D., Ristic M., Zizovic I. Evaluation and Improvement of Antioxidant and Antibacterial Activities of Supercritical Extracts from Clove Buds. J. Funct. Foods. 2013;5:416–423. doi: 10.1016/j.jff.2012.11.014. DOI
Sadowska-Bartosz I., Bartosz G. Evaluation of The Antioxidant Capacity of Food Products: Methods, Applications and Limitations. Processes. 2022;10:2031. doi: 10.3390/pr10102031. DOI
Chroho M., Rouphael Y., Petropoulos S.A., Bouissane L. Carvacrol and Thymol Content Affects the Antioxidant and Antibacterial Activity of Origanum Compactum and Thymus Zygis Essential Oils. Antibiotics. 2024;13:139. doi: 10.3390/antibiotics13020139. PubMed DOI PMC
Erdogan U. Antioxidant Activities and Chemical Composition of Essential Oil of Rhizomes of Zingiber officinale (Ginger) and Curcuma longa L. (Turmeric) Int. J. Second. Metab. 2022;9:137–148. doi: 10.21448/ijsm.993906. DOI
Taibi M., Elbouzidi A., Haddou M., Baraich A., Ou-Yahia D., Bellaouchi R., Mothana R.A., Al-Yousef H.M., Asehraou A., Addi M., et al. Evaluation of the Interaction between Carvacrol and Thymol, Major Compounds of Ptychotis Verticillata Essential Oil: Antioxidant, Anti-Inflammatory and Anticancer Activities against Breast Cancer Lines. Life. 2024;14:1037. doi: 10.3390/life14081037. PubMed DOI PMC
Adefegha S.A., Okeke B.M., Oboh G. Antioxidant Properties of Eugenol, Butylated Hydroxylanisole, and Butylated Hydroxyl Toluene with Key Biomolecules Relevant to Alzheimer’s Diseases—In Vitro. J. Food Biochem. 2021;45:e13276. doi: 10.1111/jfbc.13276. PubMed DOI
Maheswary T., Nurul A.A., Fauzi M.B. The Insights of Microbes’ Roles in Wound Healing: A Comprehensive Review. Pharmaceutics. 2021;13:981. doi: 10.3390/pharmaceutics13070981. PubMed DOI PMC
Ge Y., Wang Q. Current Research on Fungi in Chronic Wounds. Front. Mol. Biosci. 2022;9:1057766. doi: 10.3389/fmolb.2022.1057766. PubMed DOI PMC
Sehgal P.K., Sripriya R., Senthilkumar M. Advanced Textiles for Wound Care. Woodhead Publishing; Sawston, UK: 2009. Drug Delivery Dressings; pp. 223–253. (Woodhead Publishing Series in Textiles). DOI
Jeyakumar G.E., Lawrence R. Mechanisms of Bactericidal Action of Eugenol against Escherichia coli. J. Herb. Med. 2021;26:100406. doi: 10.1016/j.hermed.2020.100406. DOI
Man A., Santacroce L., Jacob R., Mare A., Man L. Antimicrobial Activity of Six Essential Oils Against a Group of Human Pathogens: A Comparative Study. Pathogens. 2019;8:15. doi: 10.3390/pathogens8010015. Erratum in Pathogens 2019, 8, 108. PubMed DOI PMC
Hou T., Sana S.S., Li H., Xing Y., Nanda A., Netala V.R., Zhang Z. Essential Oils and Its Antibacterial, Antifungal and Anti-Oxidant Activity Applications: A Review. Food Biosci. 2022;47:101716. doi: 10.1016/j.fbio.2022.101716. DOI
Biernasiuk A., Baj T., Malm A. Clove Essential Oil and Its Main Constituent, Eugenol, as Potential Natural Antifungals against Candida Spp. Alone or in Combination with Other Antimycotics Due to Synergistic Interactions. Molecules. 2023;28:215. doi: 10.3390/molecules28010215. PubMed DOI PMC
Moon S.E., Kim H.Y., Cha J.D. Synergistic Effect between Clove Oil and Its Major Compounds and Antibiotics against Oral Bacteria. Arch. Oral Biol. 2011;56:907–916. doi: 10.1016/j.archoralbio.2011.02.005. PubMed DOI
Tomnikova A., Orgonikova A., Krizek T. Liposomes: Preparation and Characterization with a Special Focus on the Application of Capillary Electrophoresis. Monatsh. Chem. 2022;153:687–695. doi: 10.1007/s00706-022-02966-0. PubMed DOI PMC
Yu D.G., Branford-White C., Williams G.R., Bligh S.W.A., White K., Zhu L.M., Chatterton N.P. Self-Assembled Liposomes from Amphiphilic Electrospun Nanofibers. Soft Matter. 2011;7:8239–8247. doi: 10.1039/c1sm05961k. DOI
Ding Q., Ding C., Liu X., Zheng Y., Zhao Y., Zhang S., Sun S., Peng Z., Liu W. Preparation of Nanocomposite Membranes Loaded with Taxifolin Liposome and Its Mechanism of Wound Healing in Diabetic Mice. Int. J. Biol. Macromol. 2023;241:124537. doi: 10.1016/j.ijbiomac.2023.124537. PubMed DOI
Hasanbegloo K., Banihashem S., Faraji Dizaji B., Bybordi S., Farrokh-Eslamlou N., Abadi P.G.-s., Jazi F.S., Irani M. Paclitaxel-Loaded Liposome-Incorporated Chitosan (Core)/Poly(ε-Caprolactone)/Chitosan (Shell) Nanofibers for the Treatment of Breast Cancer. Int. J. Biol. Macromol. 2023;230:123380. doi: 10.1016/j.ijbiomac.2023.123380. PubMed DOI
Brouwers R., Vass H., Dawson A., Squires T., Tavaddod S., Allen R.J. Stability of β-Lactam Antibiotics in Bacterial Growth Media. PLoS ONE. 2020;15:e0236198. doi: 10.1371/journal.pone.0236198. PubMed DOI PMC
El Allaoui B., Benzeid H., Zari N., el kacem Qaiss A., Bouhfid R. Functional Cellulose-Based Beads for Drug Delivery: Preparation, Functionalization, and Applications. J. Drug Deliv. Sci. Technol. 2023;88:104899. doi: 10.1016/j.jddst.2023.104899. DOI
Kamaly N., Yameen B., Wu J., Farokhzad O.C. Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release. Chem. Rev. 2016;116:2602–2663. doi: 10.1021/acs.chemrev.5b00346. PubMed DOI PMC
Heredia N.S., Vizuete K., Flores-Calero M., Katherine Pazmiño V., Pilaquinga F., Kumar B., Debut A. Comparative Statistical Analysis of the Release Kinetics Models for Nanoprecipitated Drug Delivery Systems Based on Poly(Lactic-Co-Glycolic Acid) PLoS ONE. 2022;17:e0264825. doi: 10.1371/journal.pone.0264825. PubMed DOI PMC
Hamdan N., Yamin A., Hamid S.A., Khodir W.K.W.A., Guarino V. Functionalized Antimicrobial Nanofibers: Design Criteria and Recent Advances. J. Funct. Biomater. 2021;12:59. doi: 10.3390/jfb12040059. PubMed DOI PMC
Black C., Al Mahmud H., Howle V., Wilson S., Smith A.C., Wakeman C.A. Development of a Polymicrobial Checkerboard Assay as a Tool for Determining Combinatorial Antibiotic Effectiveness in Polymicrobial Communities. Antibiotics. 2023;12:1207. doi: 10.3390/antibiotics12071207. PubMed DOI PMC
Olaru F., Jensen L.E. Chemokine Expression by Human Keratinocyte Cell Lines after Activation of Toll-like Receptors. Exp. Dermatol. 2010;19:e314–e316. doi: 10.1111/j.1600-0625.2009.01026.x. PubMed DOI PMC
Secor P.R., James G.A., Fleckman P., Olerud J.E., McInnerney K., Stewart P.S. Staphylococcus Aureus Biofilm and Planktonic Cultures Differentially Impact Gene Expression, Mapk Phosphorylation, and Cytokine Production in Human Keratinocytes. BMC Microbiol. 2011;11:143. doi: 10.1186/1471-2180-11-143. PubMed DOI PMC
Silvestrini A., Meucci E., Ricerca B.M., Mancini A. Total Antioxidant Capacity: Biochemical Aspects and Clinical Significance. Int. J. Mol. Sci. 2023;24:10978. doi: 10.3390/ijms241310978. PubMed DOI PMC
Clinical & Laboratory Standards Institute: CLSI Guidelines. [(accessed on 20 October 2024)]. Available online: https://clsi.org/
Gillespie S.H. Medical Microbiology Illustrated. Butterworth-Heinemann; Oxford, UK: 1994. Antimicrobial Susceptibility; pp. 234–247. DOI
Schrader S.M., Botella H., Vaubourgeix J. Reframing Antimicrobial Resistance as a Continuous Spectrum of Manifestations. Curr. Opin. Microbiol. 2023;72:102259. doi: 10.1016/j.mib.2022.102259. PubMed DOI
Rodríguez-Melcón C., Alonso-Calleja C., García-Fernández C., Carballo J., Capita R. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) for Twelve Antimicrobials (Biocides and Antibiotics) in Eight Strains of Listeria Monocytogenes. Biology. 2021;11:46. doi: 10.3390/biology11010046. PubMed DOI PMC
Travnickova E., Mikula P., Oprsal J., Bohacova M., Kubac L., Kimmer D., Soukupova J., Bittner M. Resazurin Assay for Assessment of Antimicrobial Properties of Electrospun Nanofiber Filtration Membranes. AMB Express. 2019;9:183. doi: 10.1186/s13568-019-0909-z. PubMed DOI PMC
Lavogina D., Lust H., Tahk M.J., Laasfeld T., Vellama H., Nasirova N., Vardja M., Eskla K.L., Salumets A., Rinken A., et al. Revisiting the Resazurin-Based Sensing of Cellular Viability: Widening the Application Horizon. Biosensors. 2022;12:196. doi: 10.3390/bios12040196. PubMed DOI PMC
Yuan L., Su Y., Cong H., Yu B., Shen Y. Application of Multifunctional Small Molecule Fluorescent Probe BODIPY in Life Science. Dye. Pigment. 2023;208:110851. doi: 10.1016/j.dyepig.2022.110851. DOI