Eukaryotic Recombinases Duplicated After Divergence From Known Asgard Archaeal RadA: Implications for the Evolution of Sex During Eukaryogenesis

. 2025 Nov 28 ; 17 (12) : .

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41428662

Grantová podpora
Genetics Society Summer Studentship
BB/V003542/1 Biotechnology and Biological Sciences Research Council - United Kingdom
EP/F500351/1 Engineering and Physical Sciences Research Council
EP/I017909/1 Engineering and Physical Sciences Research Council
NE/X009734/1 Natural Environment Research Council
inv-064683 Bill & Melinda Gates Foundation
RES0043758 Natural Sciences and Engineering Research Council of Canada
RES0046091 Natural Sciences and Engineering Research Council of Canada

The origin of meiotic sex was a key milestone in the evolution of the eukaryotic cell. The paralogous DNA recombinases Rad51 and meiosis-specific DMC1 are nearly universal among eukaryotes and have been used previously to trace the timing and origins of the meiotic machinery. Here we perform comparative genomics and phylogenetic analyses of Rad51 and DMC1 drawn from diverse eukaryotes with RadA recombinase sequences from a broad sampling of archaeal taxa, focusing on the recently sequenced diversity of Asgard archaeal taxa. We show that even with increased and new sampling, the eukaryotic Rad51 and DMC1 proteins still resolve separately from any archaeal RadA sequences. These findings suggest that the duplication of RadA into general and meiosis-specific paralogues occurred after the divergence of the eukaryotic progenitor and did not evolve at an earlier stage. These findings raise the important question of how the evolution of meiotic sex was linked to genome size expansion and the acquisition of the mitochondrial endosymbiont in early eukaryotes.

Zobrazit více v PubMed

Akıl  C, Robinson  RC. Genomes of Asgard archaea encode profilins that regulate actin. Nature. 2018:562:439–443. 10.1038/s41586-018-0548-6. PubMed DOI

Altschul  SF, et al.  Gapped BLAST and PSI-BLAST:a new generation of protein database search programs. Nucleic Acids Res. 1997:25:3389–3402. 10.1093/nar/25.17.3389. PubMed DOI PMC

Barlow  LD, et al.  Comparative genomics for evolutionary cell biology using AMOEBAE: understanding the Golgi and beyond. Methods Mol Biol. 2023:2557:431–452. 10.1007/978-1-0716-2639-9_26. PubMed DOI

Bell  G. The masterpiece of nature: the evolution and genetics of sexuality. University of California Press; 1982.

Bergero  R, et al.  Meiosis and beyond—understanding the mechanistic and evolutionary processes shaping the germline genome. Biol Rev Camb Philos Soc. 2021:96:822–841. 10.1111/brv.12680. PubMed DOI PMC

Brown  MS, Bishop  DK. DNA strand exchange and RecA homologs in meiosis. Cold Spring Harb Perspect Biol. 2014:7:a016659. 10.1101/cshperspect.a016659. PubMed DOI PMC

Capella-Gutiérrez  S, Silla-Martínez  JM, Gabaldón  T. Trimal: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009:25:1972–1973. 10.1093/bioinformatics/btp348. PubMed DOI PMC

Cavalier-Smith  T. The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification. Int J Syst Evol Microbiol. 2002:52:7–76. 10.1099/00207713-52-1-7. PubMed DOI

Chen  L, Weir  JR. The molecular machinery of meiotic recombination. Biochem Soc Trans. 2024:52:379–393. 10.1042/BST20230712. PubMed DOI PMC

Colnaghi  M, Lane  N, Pomiankowski  A. Genome expansion in early eukaryotes drove the transition from lateral gene transfer to meiotic sex. Elife. 2020:9:e58873. 10.7554/eLife.58873. PubMed DOI PMC

Colnaghi  M, Lane  N, Pomiankowski  A. Repeat sequences limit the effectiveness of lateral gene transfer and favored the evolution of meiotic sex in early eukaryotes. Proc Natl Acad Sci U S A. 2022:119:e2205041119. 10.1073/pnas.2205041119. PubMed DOI PMC

Criscuolo  A, Gribaldo  S. BMGE (block mapping and gathering with entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol Biol. 2010:10:210. 10.1186/1471-2148-10-210. PubMed DOI PMC

Dacks  J, Roger  AJ. The first sexual lineage and the relevance of facultative sex. J Mol Evol. 1999:48:779–783. 10.1007/PL00013156. PubMed DOI

Devos  DP. Reconciling Asgardarchaeota phylogenetic proximity to eukaryotes and planctomycetes cellular features in the evolution of life. Mol Biol Evol. 2021:38:3531–3542. 10.1093/molbev/msab186. PubMed DOI PMC

Donoghue  PCJ, et al.  Defining eukaryotes to dissect eukaryogenesis. Curr Biol. 2023:33:R919–R929. 10.1016/j.cub.2023.07.048. PubMed DOI

Eddy  SR. A new generation of homology search tools based on probabilistic inference. Genom Inform. 2009:23:205–211. 10.1142/9781848165632_0019. PubMed DOI

Eme  L, et al.  Inference and reconstruction of the heimdallarchaeial ancestry of eukaryotes. Nature. 2023:618:992–999. 10.1038/s41586-023-06186-2. PubMed DOI PMC

Ferlez  B, Huang  PT, Hu  J, Brooks Crickard  J. 2025. Evolution of eukaryotic specific DNA binding sites in Asgard Archaeal RecA recombinases [preprint]. bioRxiv 639135. 10.1101/2025.02.19.639135. DOI

Gallot-Lavallée  L, et al.  Massive intein content in PubMed DOI PMC

Guglielmini  J, et al.  Viral origin of eukaryotic type IIA DNA topoisomerases. Virus Evol. 2022:8:veac097. 10.1093/ve/veac097. PubMed DOI PMC

Hickey  DA. Molecular symbionts and the evolution of sex. J Hered. 1993:84:410–414. 10.1093/oxfordjournals.jhered.a111363. PubMed DOI

Huang  W-C, et al.  Phylogenomic analyses reveal that Panguiarchaeum is a clade of genome-reduced Asgard archaea within the Njordarchaeia. Mol Biol Evol. 2025:42:msaf201. 10.1093/molbev/msaf201. PubMed DOI PMC

Imachi  H, et al.  2025. Eukaryotes’ closest relatives are internally simple syntrophic archaea [preprint]. bioRxiv 640444. 10.1101/2025.02.26.640444. DOI

Jerlström-Hultqvist  J, et al.  A unique symbiosome in an anaerobic single-celled eukaryote. Nat Commun. 2024:15:9726. 10.1038/s41467-024-54102-7. PubMed DOI PMC

Kalyaanamoorthy  S, Minh  BQ, Wong  TKF, von Haeseler  A, Jermiin  LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017:14:587–589. 10.1038/nmeth.4285. PubMed DOI PMC

Katoh  K, Rozewicki  J, Yamada  KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. 2019:20:1160–1166. 10.1093/bib/bbx108. PubMed DOI PMC

Koonin  EV, et al.  A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes. Genome Biol. 2004:5:R7. 10.1186/gb-2004-5-2-r7. PubMed DOI PMC

Lane  N. Energetics and genetics across the prokaryote-eukaryote divide. Biol Direct. 2011:6:35. 10.1186/1745-6150-6-35. PubMed DOI PMC

Lane  N. How energy flow shapes cell evolution. Curr Biol. 2020:30:R471–R476. 10.1016/j.cub.2020.03.055. PubMed DOI

Lane  N, Martin  W. The energetics of genome complexity. Nature. 2010:467:929–934. 10.1038/nature09486. PubMed DOI

Leka  KP, Wideman  JG. An introduction to comparative genomics, EukProt, and the reciprocal best hit (RBH) method for bench biologists: ancestral phosphorylation of Tom22 in eukaryotes as a case study. Methods Enzymol. 2024:707:209–234. 10.1016/bs.mie.2024.07.036. PubMed DOI

López-García  P, Moreira  D. The symbiotic origin of the eukaryotic cell. C R Biol. 2023:346:55–73. 10.5802/crbiol.118. PubMed DOI

MacLeod  FI, et al.  2025. An Asgard archaeon with internal membrane compartments [preprint]. bioRxiv 686947. 10.1101/2025.11.06.686947. DOI

Makarova  KS, Wolf  YI, Mekhedov  SL, Mirkin  BG, Koonin  EV. Ancestral paralogs and pseudoparalogs and their role in the emergence of the eukaryotic cell. Nucleic Acids Res. 2005:33:4626–4638. 10.1093/nar/gki775. PubMed DOI PMC

Martin  W, Müller  M. The hydrogen hypothesis for the first eukaryote. Nature. 1998:392:37–41. 10.1038/32096. PubMed DOI

Minh  BQ, et al.  IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020:37:1530–1534. 10.1093/molbev/msaa015. PubMed DOI PMC

Moi  D, et al.  Discovery of archaeal fusexins homologous to eukaryotic HAP2/GCS1 gamete fusion proteins. Nat Commun. 2022:13:3880. 10.1038/s41467-022-31564-1. PubMed DOI PMC

Muñoz-Gómez  SA, et al.  Site-and-branch-heterogeneous analyses of an expanded dataset favour mitochondria as sister to known Alphaproteobacteria. Nat Ecol Evol. 2022:6:253–262. 10.1038/s41559-021-01638-2. PubMed DOI

O’Malley  MA. The first eukaryote cell: an unfinished history of contestation. Stud Hist Philos Biol Biomed Sci. 2010:41:212–224. 10.1016/j.shpsc.2010.07.010. PubMed DOI

Radzvilavicius  AL, Lane  N, Pomiankowski  A. Sexual conflict explains the extraordinary diversity of mechanisms regulating mitochondrial inheritance. BMC Biol. 2017:15:94. 10.1186/s12915-017-0437-8. PubMed DOI PMC

Ramesh  MA, Malik  S-B, Logsdon  JMJ. A phylogenomic inventory of meiotic genes; evidence for sex in Giardia and an early eukaryotic origin of meiosis. Curr Biol. 2005:15:185–191. 10.1016/j.cub.2005.01.003. PubMed DOI

Richards  TA, et al.  Reconstructing the last common ancestor of all eukaryotes. PLoS Biol. 2024:22:e3002917. 10.1371/journal.pbio.3002917. PubMed DOI PMC

Schurko  AM, Neiman  M, Logsdon  JMJ. Signs of sex: what we know and how we know it. Trends Ecol Evol. 2009:24:208–217. 10.1016/j.tree.2008.11.010. PubMed DOI

Seitz  EM, Brockman  JP, Sandler  SJ, Clark  AJ, Kowalczykowski  SC. Rada protein is an archaeal RecA protein homolog that catalyzes DNA strand exchange. Genes Dev. 1998:12:1248–1253. 10.1101/gad.12.9.1248. PubMed DOI PMC

Souza  DP, et al.  Asgard archaea reveal the conserved principles of ESCRT-III membrane remodeling. Sci Adv. 2025:11:eads5255. 10.1126/sciadv.ads5255. PubMed DOI PMC

Spang  A, et al.  Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature. 2015:521:173–179. 10.1038/nature14447. PubMed DOI PMC

The UniProt Consortium . UniProt: the universal protein knowledgebase in 2025. Nucleic Acids Res. 2025:53:D609–D617. 10.1093/nar/gkae1010. PubMed DOI PMC

Vargová  R, et al.  The Asgard archaeal origins of Arf family GTPases involved in eukaryotic organelle dynamics. Nat Microbiol. 2025:10:495–508. 10.1038/s41564-024-01904-6. PubMed DOI

Vosseberg  J, et al.  The emerging view on the origin and early evolution of eukaryotic cells. Nature. 2024:633:295–305. 10.1038/s41586-024-07677-6. PubMed DOI

Williamson  K, et al.  A robustly rooted tree of eukaryotes reveals their excavate ancestry. Nature. 2025:640:974–981. 10.1038/s41586-025-08709-5. PubMed DOI

Wollweber  F, et al.  Microtubules in Asgard archaea. Cell. 2025:188:2451–2464.e26. 10.1016/j.cell.2025.02.027. PubMed DOI

Wu  F, et al.  Unique mobile elements and scalable gene flow at the prokaryote–eukaryote boundary revealed by circularized Asgard archaea genomes. Nat Microbiol. 2022:7:200–212. 10.1038/s41564-021-01039-y. PubMed DOI PMC

Yazaki  E, et al.  Barthelonids represent a deep-branching metamonad clade with mitochondrion-related organelles predicted to generate no ATP. Proc Biol Sci. 2020:287:20201538. 10.1098/rspb.2020.1538. PubMed DOI PMC

Záhonová  K, Lukeš  J, Dacks  JB. Diplonemid protists possess exotic endomembrane machinery, impacting models of membrane trafficking in modern and ancient eukaryotes. Curr Biol. 2025:35:1508–1520.e2. 10.1016/j.cub.2025.02.032. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...