Modular Design of Mitochondrion-Targeted Iron Chelators Allows Highly Selective Antiparasitic Activity against Trypanosomes and Apicomplexan Parasites
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
U10 CA021115
NCI NIH HHS - United States
PubMed
41428959
PubMed Central
PMC12797238
DOI
10.1021/acsinfecdis.5c00548
Knihovny.cz E-zdroje
- Klíčová slova
- Toxoplasma, Trypanosoma, antiparasitic agents, drug repurposing, iron chelators, mitochondrion,
- MeSH
- antiparazitární látky * farmakologie chemie MeSH
- chelátory železa * farmakologie chemie chemická syntéza MeSH
- deferasirox farmakologie chemie MeSH
- deferoxamin farmakologie chemie analogy a deriváty MeSH
- lidé MeSH
- mitochondrie * účinky léků metabolismus MeSH
- racionální návrh léčiv MeSH
- Toxoplasma * účinky léků MeSH
- Trypanosoma * účinky léků MeSH
- vztahy mezi strukturou a aktivitou MeSH
- železo metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antiparazitární látky * MeSH
- chelátory železa * MeSH
- deferasirox MeSH
- deferoxamin MeSH
- železo MeSH
Parasitic protozoa exhibit a high demand for iron, with mitochondrial iron metabolism representing a vulnerable target for chemotherapeutic intervention. We recently demonstrated that mitochondrial targeting of the iron chelator deferoxamine (DFO) via triphenylphosphonium (TPP) conjugation enhances its antiparasitic efficacy. To expand upon this strategy, mitochondrially targeted derivatives of DFO and deferasirox (DFX) were synthesized and evaluated for their activity against important human parasites. The DFX derivative mitoDFX was effective against Trypanosoma spp. and Toxoplasma gondii with remarkable selectivity. The fact that mitoDFX is a promising anticancer agent, which is likely safe to use in the context of human health, highlights the potential for drug repurposing in parasitology. Structure-activity relationship (SAR) studies and iron distribution analyses in trypanosomes revealed that mitochondrial targeting of the compounds, rather than iron chelation per se, is the main driver of the antiparasitic effects, underscoring the critical role of phosphonium salts in bioactivity.
Centre for Infectious Diseases Parasitology Heidelberg University Hospital Heidelberg 69120 Germany
Department of Organic Chemistry Faculty of Science Charles University Prague 25250 Czech Republic
Department of Parasitology Faculty of Science Charles University BIOCEV Vestec 25250 Czech Republic
Institute of Biotechnology of the Czech Academy of Sciences BIOCEV Vestec 25250 Czech Republic
LPHI University of Montpellier CNRS INSERM Montpellier 34095 France
Zobrazit více v PubMed
Zíková A., Hampl V., Paris Z., Týč J., Lukeš J.. Aerobic Mitochondria of Parasitic Protists: Diverse Genomes and Complex Functions. Mol. Biochem. Parasitol. 2016;209(1–2):46–57. doi: 10.1016/j.molbiopara.2016.02.007. PubMed DOI
Ross M. F., Kelso G. F., Blaikie F. H., James A. M., Cochemé H. M., Filipovska A., Da Ros T., Hurd T. R., Smith R. A. J., Murphy M. P.. Lipophilic Triphenylphosphonium Cations as Tools in Mitochondrial Bioenergetics and Free Radical Biology. Biochemistry. 2005;70(2):222–230. doi: 10.1007/s10541-005-0104-5. PubMed DOI
Long T. E., Lu X., Galizzi M., Docampo R., Gut J., Rosenthal P. J.. Phosphonium Lipocations as Antiparasitic Agents. Bioorg. Med. Chem. Lett. 2012;22(8):2976–2979. doi: 10.1016/j.bmcl.2012.02.045. PubMed DOI PMC
Fueyo González F. J., Ebiloma G. U., Izquierdo García C., Bruggeman V., Sánchez Villamañán J. M., Donachie A., Balogun E. O., Inaoka D. K., Shiba T., Harada S., Kita K., De Koning H. P., Dardonville C.. Conjugates of 2,4-Dihydroxybenzoate and Salicylhydroxamate and Lipocations Display Potent Antiparasite Effects by Efficiently Targeting the Trypanosoma brucei and Trypanosoma congolense Mitochondrion. J. Med. Chem. 2017;60(4):1509–1522. doi: 10.1021/acs.jmedchem.6b01740. PubMed DOI
Manzano J. I., Cueto-Díaz E. J., Olías-Molero A. I., Perea A., Herraiz T., Torrado J. J., Alunda J. M., Gamarro F., Dardonville C.. Discovery and Pharmacological Studies of 4-Hydroxyphenyl-Derived Phosphonium Salts Active in a Mouse Model of Visceral Leishmaniasis. J. Med. Chem. 2019;62(23):10664–10675. doi: 10.1021/acs.jmedchem.9b00998. PubMed DOI
Taladriz A., Healy A., Flores Pérez E. J., Herrero García V., Ríos Martínez C., Alkhaldi A. A. M., Eze A. A., Kaiser M., De Koning H. P., Chana A., Dardonville C.. Synthesis and Structure-Activity Analysis of New Phosphonium Salts with Potent Activity against African Trypanosomes. J. Med. Chem. 2012;55(6):2606–2622. doi: 10.1021/jm2014259. PubMed DOI
Arbon D., Mach J., Čadková A., Sipkova A., Stursa J., Klanicová K., Machado M., Ganter M., Levytska V., Sojka D., Truksa J., Werner L., Sutak R.. Chelation of Mitochondrial Iron as an Antiparasitic Strategy. ACS Infect. Dis. 2024;10(2):676–687. doi: 10.1021/acsinfecdis.3c00529. PubMed DOI PMC
Arbon D., Ženíšková K., Šubrtová K., Mach J., Štursa J., Machado M., Zahedifard F., Leštinová T., Hierro-Yap C., Neuzil J., Volf P., Ganter M., Zoltner M., Zíková A., Werner L., Sutak R.. Repurposing of MitoTam: Novel Anti-Cancer Drug Candidate Exhibits Potent Activity against Major Protozoan and Fungal Pathogens. Antimicrob. Agents Chemother. 2022;66(8):e0072722. doi: 10.1128/aac.00727-22. PubMed DOI PMC
Bielcikova Z., Stursa J., Krizova L., Dong L., Spacek J., Hlousek S., Vocka M., Rohlenova K., Bartosova O., Cerny V., Padrta T., Pesta M., Michalek P., Hubackova S. S., Kolostova K., Pospisilova E., Bobek V., Klezl P., Zobalova R., Endaya B., Rohlena J., Petruzelka L., Werner L., Neuzil J.. Mitochondrially Targeted Tamoxifen in Patients with Metastatic Solid Tumours: An Open-Label, Phase I/Ib Single-Centre Trial. eClinicalMedicine. 2023;57(February):101873. doi: 10.1016/j.eclinm.2023.101873. PubMed DOI PMC
Mach J., Sutak R.. Iron in Parasitic Protists - from Uptake to Storage and Where We Can Interfere. Metallomics. 2020;12(9):1335–1347. doi: 10.1039/d0mt00125b. PubMed DOI
Shah N. R.. Advances in Iron Chelation Therapy: Transitioning to a New Oral Formulation. Drugs Context. 2017;6:212502. doi: 10.7573/dic.212502. PubMed DOI PMC
Jadhav, S. B. ; Sandoval-Acuña, C. ; Pacior, Y. ; Klanicova, K. ; Blazkova, K. ; Sedlacek, R. ; Stursa, J. ; Werner, L. ; Truksa, J. . Mitochondrially Targeted Deferasirox Kills Cancer Cells via Simultaneous Iron Deprivation and Ferroptosis Induction bioRxiv 2024. 10.1101/2024.01.17.575692. DOI
Jadhav S. B., Vondrackova M., Potomova P., Sandoval-Acuña C., Smigova J., Klanicova K., Rosel D., Brabek J., Stursa J., Werner L., Truksa J.. NDRG1 Acts as an Oncogene in Triple-Negative Breast Cancer and Its Loss Sensitizes Cells to Mitochondrial Iron Chelation. Front. Pharmacol. 2024;15:1422369. doi: 10.3389/fphar.2024.1422369. PubMed DOI PMC
Sanchez S. G., Besteiro S.. The Pathogenicity and Virulence of Toxoplasma gondii . Virulence. 2021;12(1):3095–3114. doi: 10.1080/21505594.2021.2012346. PubMed DOI PMC
Ovciarikova J., Lemgruber L., Stilger K. L., Sullivan W. J., Sheiner L.. Mitochondrial Behaviour throughout the Lytic Cycle of Toxoplasma gondii . Sci. Rep. 2017;7:42746. doi: 10.1038/srep42746. PubMed DOI PMC
Lavine M. D., Arrizabalaga G.. Analysis of Monensin Sensitivity in Toxoplasma gondii Reveals Autophagy as a Mechanism for Drug Induced Death. PLoS One. 2012;7(7):e42107. doi: 10.1371/JOURNAL.PONE.0042107. PubMed DOI PMC
Aw Y. T. V., Seidi A., Hayward J. A., Lee J., Makota F. V., Rug M., van Dooren G. G.. A Key Cytosolic Iron–Sulfur Cluster Synthesis Protein Localizes to the Mitochondrion of Toxoplasma gondii . Mol. Microbiol. 2021;115(5):968–985. doi: 10.1111/mmi.14651. PubMed DOI
Pamukcu S., Cerutti A., Bordat Y., Hem S., Rofidal V., Besteiro S.. Differential Contribution of Two Organelles of Endosymbiotic Origin to Iron-Sulfur Cluster Synthesis and Overall Fitness in Toxoplasma. PLoS Pathog. 2021;17(11):e1010096. doi: 10.1371/JOURNAL.PPAT.1010096. PubMed DOI PMC
Schnaufer A., Clark-Walker G. D., Steinberg A. G., Stuart K.. The F1-ATP Synthase Complex in Bloodstream Stage Trypanosomes Has an Unusual and Essential Function. EMBO J. 2005;24(23):4029–4040. doi: 10.1038/sj.emboj.7600862. PubMed DOI PMC
Kispal G., Csere P., Prohl C., Lill R.. The Mitochondrial Proteins Atm1p and Nfs1p Are Essential for Biogenesis of Cytosolic Fe/S Proteins. EMBO J. 1999;18(14):3981–3989. doi: 10.1093/emboj/18.14.3981. PubMed DOI PMC
Lukeš J., Basu S.. Fe/S Protein Biogenesis in Trypanosomes A Review. Biochim. Biophys. Acta, Mol. Cell Res. 2015;1853(6):1481–1492. doi: 10.1016/j.bbamcr.2014.08.015. PubMed DOI
Trnka J., Elkalaf M., Andě M.. Lipophilic Triphenylphosphonium Cations Inhibit Mitochondrial Electron Transport Chain and Induce Mitochondrial Proton Leak. PLoS One. 2015;10(4):e0121837. doi: 10.1371/JOURNAL.PONE.0121837. PubMed DOI PMC
Kulkarni C. A., Fink B. D., Gibbs B. E., Chheda P. R., Wu M., Sivitz W. I., Kerns R. J.. A Novel Triphenylphosphonium Carrier to Target Mitochondria without Uncoupling Oxidative Phosphorylation. J. Med. Chem. 2021;64(1):662–676. doi: 10.1021/acs.jmedchem.0c01671. PubMed DOI PMC
Yusuf J. J.. Review on Bovine Babesiosis and Its Economical Importance. J. Vet. Med. Res. 2017;4(5):1090. doi: 10.47739/2378-931X/1090. DOI
Koonyosying P., Srichairatanakool S., Tiwananthagorn S., Sthitmatee N.. Inhibitory Effects on Bovine Babesial Infection by Iron Chelator, 1-(N-Acetyl-6-Aminohexyl)- 3-Hydroxy-2-Methylpyridin-4-One (CM1), and Antimalarial Drugs. Vet. Parasitol. 2023;324:110055. doi: 10.1016/j.vetpar.2023.110055. PubMed DOI
Loyevsky M., Lytton S. D., Mester B., Libman J., Shanzer A., Cabantchik Z. I.. The Antimalarial Action of Desferal Involves a Direct Access Route to Erythrocytic (Plasmodium falciparum) Parasites. J. Clin. Invest. 1993;91(1):218–224. doi: 10.1172/JCI116174. PubMed DOI PMC
Lytton S. D., Loyevsky M., Mester B., Libman J., Landau I., Shanzer A., Cabantchik Z. I.. In Vivo Antimalarial Action of a Lipophilic Iron (III) Chelator: Suppression of Plasmodium Vinckei Infection by Reversed Siderophore. Am. J. Hematol. 1993;43(3):217–220. doi: 10.1002/ajh.2830430311. PubMed DOI
Sandoval-Acuña C., Torrealba N., Tomkova V., Jadhav S. B., Blazkova K., Merta L., Lettlova S., Adamcova M. K., Rosel D., Brabek J., Neuzil J., Stursa J., Werner L., Truksa J.. Targeting Mitochondrial Iron Metabolism Suppresses Tumor Growth and Metastasis by Inducing Mitochondrial Dysfunction and Mitophagy. Cancer Res. 2021;81(9):2289–2303. doi: 10.1158/0008-5472.CAN-20-1628. PubMed DOI
Renaud E. A., Maupin A. J. M., Bordat Y., Graindorge A., Berry L., Besteiro S.. Iron Depletion Has Different Consequences on the Growth and Survival of Toxoplasma gondii Strains. Virulence. 2024;15(1):2329566. doi: 10.1080/21505594.2024.2329566. PubMed DOI PMC
Motyčková A., Voleman L., Najdrová V., Arbonová L., Benda M., Dohnálek V., Janowicz N., Malych R., Šut’ák R., Ettema T. J. G., Svärd S., Stairs C. W., Doležal P.. Adaptation of the Late ISC Pathway in the Anaerobic Mitochondrial Organelles of Giardia Intestinalis. PLoS Pathog. 2023;19(10 October):e1010773. doi: 10.1371/JOURNAL.PPAT.1010773. PubMed DOI PMC
Lévêque M. F., Berry L., Cipriano M. J., Nguyen H. M., Striepen B., Besteiro S.. Autophagy-Related Protein ATG8 Has a Noncanonical Function for Apicoplast Inheritance in Toxoplasma gondii . mBio. 2015;6(6):10-1128. doi: 10.1128/mBio.01446-15. PubMed DOI PMC
Xiao B., Deng X., Zhou W., Tan E. K.. Flow Cytometry-Based Assessment of Mitophagy Using MitoTracker. Front. Cell. Neurosci. 2016;10(MAR2016):76. doi: 10.3389/FNCEL.2016.00076. PubMed DOI PMC
Renaud E. A., Pamukcu S., Cerutti A., Berry L., Lemaire-Vieille C., Yamaryo-Botté Y., Botté C. Y., Besteiro S.. Disrupting the Plastidic Iron-Sulfur Cluster Biogenesis Pathway in Toxoplasma gondii Has Pleiotropic Effects Irreversibly Impacting Parasite Viability. J. Biol. Chem. 2022;298(8):102243. doi: 10.1016/j.jbc.2022.102243. PubMed DOI PMC