Modular Design of Mitochondrion-Targeted Iron Chelators Allows Highly Selective Antiparasitic Activity against Trypanosomes and Apicomplexan Parasites

. 2026 Jan 09 ; 12 (1) : 119-127. [epub] 20251222

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41428959

Grantová podpora
U10 CA021115 NCI NIH HHS - United States

Parasitic protozoa exhibit a high demand for iron, with mitochondrial iron metabolism representing a vulnerable target for chemotherapeutic intervention. We recently demonstrated that mitochondrial targeting of the iron chelator deferoxamine (DFO) via triphenylphosphonium (TPP) conjugation enhances its antiparasitic efficacy. To expand upon this strategy, mitochondrially targeted derivatives of DFO and deferasirox (DFX) were synthesized and evaluated for their activity against important human parasites. The DFX derivative mitoDFX was effective against Trypanosoma spp. and Toxoplasma gondii with remarkable selectivity. The fact that mitoDFX is a promising anticancer agent, which is likely safe to use in the context of human health, highlights the potential for drug repurposing in parasitology. Structure-activity relationship (SAR) studies and iron distribution analyses in trypanosomes revealed that mitochondrial targeting of the compounds, rather than iron chelation per se, is the main driver of the antiparasitic effects, underscoring the critical role of phosphonium salts in bioactivity.

Zobrazit více v PubMed

Zíková A., Hampl V., Paris Z., Týč J., Lukeš J.. Aerobic Mitochondria of Parasitic Protists: Diverse Genomes and Complex Functions. Mol. Biochem. Parasitol. 2016;209(1–2):46–57. doi: 10.1016/j.molbiopara.2016.02.007. PubMed DOI

Ross M. F., Kelso G. F., Blaikie F. H., James A. M., Cochemé H. M., Filipovska A., Da Ros T., Hurd T. R., Smith R. A. J., Murphy M. P.. Lipophilic Triphenylphosphonium Cations as Tools in Mitochondrial Bioenergetics and Free Radical Biology. Biochemistry. 2005;70(2):222–230. doi: 10.1007/s10541-005-0104-5. PubMed DOI

Long T. E., Lu X., Galizzi M., Docampo R., Gut J., Rosenthal P. J.. Phosphonium Lipocations as Antiparasitic Agents. Bioorg. Med. Chem. Lett. 2012;22(8):2976–2979. doi: 10.1016/j.bmcl.2012.02.045. PubMed DOI PMC

Fueyo González F. J., Ebiloma G. U., Izquierdo García C., Bruggeman V., Sánchez Villamañán J. M., Donachie A., Balogun E. O., Inaoka D. K., Shiba T., Harada S., Kita K., De Koning H. P., Dardonville C.. Conjugates of 2,4-Dihydroxybenzoate and Salicylhydroxamate and Lipocations Display Potent Antiparasite Effects by Efficiently Targeting the Trypanosoma brucei and Trypanosoma congolense Mitochondrion. J. Med. Chem. 2017;60(4):1509–1522. doi: 10.1021/acs.jmedchem.6b01740. PubMed DOI

Manzano J. I., Cueto-Díaz E. J., Olías-Molero A. I., Perea A., Herraiz T., Torrado J. J., Alunda J. M., Gamarro F., Dardonville C.. Discovery and Pharmacological Studies of 4-Hydroxyphenyl-Derived Phosphonium Salts Active in a Mouse Model of Visceral Leishmaniasis. J. Med. Chem. 2019;62(23):10664–10675. doi: 10.1021/acs.jmedchem.9b00998. PubMed DOI

Taladriz A., Healy A., Flores Pérez E. J., Herrero García V., Ríos Martínez C., Alkhaldi A. A. M., Eze A. A., Kaiser M., De Koning H. P., Chana A., Dardonville C.. Synthesis and Structure-Activity Analysis of New Phosphonium Salts with Potent Activity against African Trypanosomes. J. Med. Chem. 2012;55(6):2606–2622. doi: 10.1021/jm2014259. PubMed DOI

Arbon D., Mach J., Čadková A., Sipkova A., Stursa J., Klanicová K., Machado M., Ganter M., Levytska V., Sojka D., Truksa J., Werner L., Sutak R.. Chelation of Mitochondrial Iron as an Antiparasitic Strategy. ACS Infect. Dis. 2024;10(2):676–687. doi: 10.1021/acsinfecdis.3c00529. PubMed DOI PMC

Arbon D., Ženíšková K., Šubrtová K., Mach J., Štursa J., Machado M., Zahedifard F., Leštinová T., Hierro-Yap C., Neuzil J., Volf P., Ganter M., Zoltner M., Zíková A., Werner L., Sutak R.. Repurposing of MitoTam: Novel Anti-Cancer Drug Candidate Exhibits Potent Activity against Major Protozoan and Fungal Pathogens. Antimicrob. Agents Chemother. 2022;66(8):e0072722. doi: 10.1128/aac.00727-22. PubMed DOI PMC

Bielcikova Z., Stursa J., Krizova L., Dong L., Spacek J., Hlousek S., Vocka M., Rohlenova K., Bartosova O., Cerny V., Padrta T., Pesta M., Michalek P., Hubackova S. S., Kolostova K., Pospisilova E., Bobek V., Klezl P., Zobalova R., Endaya B., Rohlena J., Petruzelka L., Werner L., Neuzil J.. Mitochondrially Targeted Tamoxifen in Patients with Metastatic Solid Tumours: An Open-Label, Phase I/Ib Single-Centre Trial. eClinicalMedicine. 2023;57(February):101873. doi: 10.1016/j.eclinm.2023.101873. PubMed DOI PMC

Mach J., Sutak R.. Iron in Parasitic Protists - from Uptake to Storage and Where We Can Interfere. Metallomics. 2020;12(9):1335–1347. doi: 10.1039/d0mt00125b. PubMed DOI

Shah N. R.. Advances in Iron Chelation Therapy: Transitioning to a New Oral Formulation. Drugs Context. 2017;6:212502. doi: 10.7573/dic.212502. PubMed DOI PMC

Jadhav, S. B. ; Sandoval-Acuña, C. ; Pacior, Y. ; Klanicova, K. ; Blazkova, K. ; Sedlacek, R. ; Stursa, J. ; Werner, L. ; Truksa, J. . Mitochondrially Targeted Deferasirox Kills Cancer Cells via Simultaneous Iron Deprivation and Ferroptosis Induction bioRxiv 2024. 10.1101/2024.01.17.575692. DOI

Jadhav S. B., Vondrackova M., Potomova P., Sandoval-Acuña C., Smigova J., Klanicova K., Rosel D., Brabek J., Stursa J., Werner L., Truksa J.. NDRG1 Acts as an Oncogene in Triple-Negative Breast Cancer and Its Loss Sensitizes Cells to Mitochondrial Iron Chelation. Front. Pharmacol. 2024;15:1422369. doi: 10.3389/fphar.2024.1422369. PubMed DOI PMC

Sanchez S. G., Besteiro S.. The Pathogenicity and Virulence of Toxoplasma gondii . Virulence. 2021;12(1):3095–3114. doi: 10.1080/21505594.2021.2012346. PubMed DOI PMC

Ovciarikova J., Lemgruber L., Stilger K. L., Sullivan W. J., Sheiner L.. Mitochondrial Behaviour throughout the Lytic Cycle of Toxoplasma gondii . Sci. Rep. 2017;7:42746. doi: 10.1038/srep42746. PubMed DOI PMC

Lavine M. D., Arrizabalaga G.. Analysis of Monensin Sensitivity in Toxoplasma gondii Reveals Autophagy as a Mechanism for Drug Induced Death. PLoS One. 2012;7(7):e42107. doi: 10.1371/JOURNAL.PONE.0042107. PubMed DOI PMC

Aw Y. T. V., Seidi A., Hayward J. A., Lee J., Makota F. V., Rug M., van Dooren G. G.. A Key Cytosolic Iron–Sulfur Cluster Synthesis Protein Localizes to the Mitochondrion of Toxoplasma gondii . Mol. Microbiol. 2021;115(5):968–985. doi: 10.1111/mmi.14651. PubMed DOI

Pamukcu S., Cerutti A., Bordat Y., Hem S., Rofidal V., Besteiro S.. Differential Contribution of Two Organelles of Endosymbiotic Origin to Iron-Sulfur Cluster Synthesis and Overall Fitness in Toxoplasma. PLoS Pathog. 2021;17(11):e1010096. doi: 10.1371/JOURNAL.PPAT.1010096. PubMed DOI PMC

Schnaufer A., Clark-Walker G. D., Steinberg A. G., Stuart K.. The F1-ATP Synthase Complex in Bloodstream Stage Trypanosomes Has an Unusual and Essential Function. EMBO J. 2005;24(23):4029–4040. doi: 10.1038/sj.emboj.7600862. PubMed DOI PMC

Kispal G., Csere P., Prohl C., Lill R.. The Mitochondrial Proteins Atm1p and Nfs1p Are Essential for Biogenesis of Cytosolic Fe/S Proteins. EMBO J. 1999;18(14):3981–3989. doi: 10.1093/emboj/18.14.3981. PubMed DOI PMC

Lukeš J., Basu S.. Fe/S Protein Biogenesis in Trypanosomes  A Review. Biochim. Biophys. Acta, Mol. Cell Res. 2015;1853(6):1481–1492. doi: 10.1016/j.bbamcr.2014.08.015. PubMed DOI

Trnka J., Elkalaf M., Andě M.. Lipophilic Triphenylphosphonium Cations Inhibit Mitochondrial Electron Transport Chain and Induce Mitochondrial Proton Leak. PLoS One. 2015;10(4):e0121837. doi: 10.1371/JOURNAL.PONE.0121837. PubMed DOI PMC

Kulkarni C. A., Fink B. D., Gibbs B. E., Chheda P. R., Wu M., Sivitz W. I., Kerns R. J.. A Novel Triphenylphosphonium Carrier to Target Mitochondria without Uncoupling Oxidative Phosphorylation. J. Med. Chem. 2021;64(1):662–676. doi: 10.1021/acs.jmedchem.0c01671. PubMed DOI PMC

Yusuf J. J.. Review on Bovine Babesiosis and Its Economical Importance. J. Vet. Med. Res. 2017;4(5):1090. doi: 10.47739/2378-931X/1090. DOI

Koonyosying P., Srichairatanakool S., Tiwananthagorn S., Sthitmatee N.. Inhibitory Effects on Bovine Babesial Infection by Iron Chelator, 1-(N-Acetyl-6-Aminohexyl)- 3-Hydroxy-2-Methylpyridin-4-One (CM1), and Antimalarial Drugs. Vet. Parasitol. 2023;324:110055. doi: 10.1016/j.vetpar.2023.110055. PubMed DOI

Loyevsky M., Lytton S. D., Mester B., Libman J., Shanzer A., Cabantchik Z. I.. The Antimalarial Action of Desferal Involves a Direct Access Route to Erythrocytic (Plasmodium falciparum) Parasites. J. Clin. Invest. 1993;91(1):218–224. doi: 10.1172/JCI116174. PubMed DOI PMC

Lytton S. D., Loyevsky M., Mester B., Libman J., Landau I., Shanzer A., Cabantchik Z. I.. In Vivo Antimalarial Action of a Lipophilic Iron (III) Chelator: Suppression of Plasmodium Vinckei Infection by Reversed Siderophore. Am. J. Hematol. 1993;43(3):217–220. doi: 10.1002/ajh.2830430311. PubMed DOI

Sandoval-Acuña C., Torrealba N., Tomkova V., Jadhav S. B., Blazkova K., Merta L., Lettlova S., Adamcova M. K., Rosel D., Brabek J., Neuzil J., Stursa J., Werner L., Truksa J.. Targeting Mitochondrial Iron Metabolism Suppresses Tumor Growth and Metastasis by Inducing Mitochondrial Dysfunction and Mitophagy. Cancer Res. 2021;81(9):2289–2303. doi: 10.1158/0008-5472.CAN-20-1628. PubMed DOI

Renaud E. A., Maupin A. J. M., Bordat Y., Graindorge A., Berry L., Besteiro S.. Iron Depletion Has Different Consequences on the Growth and Survival of Toxoplasma gondii Strains. Virulence. 2024;15(1):2329566. doi: 10.1080/21505594.2024.2329566. PubMed DOI PMC

Motyčková A., Voleman L., Najdrová V., Arbonová L., Benda M., Dohnálek V., Janowicz N., Malych R., Šut’ák R., Ettema T. J. G., Svärd S., Stairs C. W., Doležal P.. Adaptation of the Late ISC Pathway in the Anaerobic Mitochondrial Organelles of Giardia Intestinalis. PLoS Pathog. 2023;19(10 October):e1010773. doi: 10.1371/JOURNAL.PPAT.1010773. PubMed DOI PMC

Lévêque M. F., Berry L., Cipriano M. J., Nguyen H. M., Striepen B., Besteiro S.. Autophagy-Related Protein ATG8 Has a Noncanonical Function for Apicoplast Inheritance in Toxoplasma gondii . mBio. 2015;6(6):10-1128. doi: 10.1128/mBio.01446-15. PubMed DOI PMC

Xiao B., Deng X., Zhou W., Tan E. K.. Flow Cytometry-Based Assessment of Mitophagy Using MitoTracker. Front. Cell. Neurosci. 2016;10(MAR2016):76. doi: 10.3389/FNCEL.2016.00076. PubMed DOI PMC

Renaud E. A., Pamukcu S., Cerutti A., Berry L., Lemaire-Vieille C., Yamaryo-Botté Y., Botté C. Y., Besteiro S.. Disrupting the Plastidic Iron-Sulfur Cluster Biogenesis Pathway in Toxoplasma gondii Has Pleiotropic Effects Irreversibly Impacting Parasite Viability. J. Biol. Chem. 2022;298(8):102243. doi: 10.1016/j.jbc.2022.102243. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...