Sex classification using exocranial surfaces in a multi-population sample
Status Publisher Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
PubMed
41432749
DOI
10.1007/s00414-025-03694-w
PII: 10.1007/s00414-025-03694-w
Knihovny.cz E-zdroje
- Klíčová slova
- 3D imaging methods, Forensic anthropology, Population specificity, Sex estimation, Sexual dimorphism, Skull,
- Publikační typ
- časopisecké články MeSH
The accurate individual identification of skeletal remains is indispensable in forensic contexts. The skull serves as an important source of information about the sex of human skeletal remains, and many different approaches have been published. High method success and reliability are prerequisites for the legal utilisation of results. However, the population specificity of variable sexual dimorphism typically reduce effectiveness. This study presents a verification of an innovative classification model using the exocranial surface across a multi-population sample. This sex estimation method proved to be highly reliable and accurate for Central European populations, achieving high accuracy rates for Czech (96%) and Slovak (92%) samples. The French sample had an accuracy of 90%, demonstrating the method's effectiveness in Southern European contexts. Prediction using the combined data from these three populations achieved a cross-validation accuracy of 91.74%. When this classifier model was applied to Egyptian crania, the accuracy dropped to 82%, and when applied to crania from a Danish dataset to 80%. The reasons for the failure of the classifier are the smaller degree of sexual dimorphism among Danes, and the more distinct morphological differences in males and females among Egyptians. These lower accuracy rates indicate that the classifier's reliability diminishes when applied to more diverse and geographically distant populations. The classifier does not work well when applied to a population other than that for which it was developed. The method is robust, and requires further refinement to achieve similar reliability across a broader range of populations.
Zobrazit více v PubMed
Langley N, Tersigni-Tarrant M (2017) Forensic anthropology: a comprehensive introduction. CRC, Boca Raton. https://doi.org/10.4324/9781315300030 DOI
Messer DL, Getz SM (2020) Effect of sex misclassification on the skeletal biological profile. In: Klales AR (ed) Sex Estimation of the human skeleton. Academic, London, pp 53–72. https://doi.org/10.1016/B978-0-12-815767-1.00005-5 DOI
Spradley MK (2016) Metric methods for the biological profile in forensic anthropology: sex, ancestry, and stature. Acad Forensic Pathol 6(3):391–399. https://doi.org/10.23907/2016.040 PubMed DOI PMC
Buonasera T, Eerkens J, de Flamingh A et al (2020) A comparison of proteomic, genomic, and osteological methods of archaeological sex estimation. Sci Rep 10:11897. https://doi.org/10.1038/s41598-020-68550-w PubMed DOI PMC
Mikšík I, Morvan M, Brůžek J (2023) Peptide analysis of tooth enamel–a sex estimation tool for archaeological, anthropological, or forensic research. J Sep Sci 46(15):2300183 DOI
Čechová M, Dupej J, Brůžek J, Bejdová Š, Horák M, Velemínská J (2019) Sex estimation using external morphology of the frontal bone and frontal sinuses in a contemporary Czech population. Int J Legal Med 133:1285–1294. https://doi.org/10.1007/s00414-019-02063-8 PubMed DOI
Gao H, Geng G, Yang W (2018) Sex determination of 3D skull based on a novel unsupervised learning method. Comput Math Methods Med. https://doi.org/10.1155/2018/4567267 PubMed DOI PMC
Santos F, Guyomarc’h P, Brůžek J (2014) Statistical sex determination from craniometrics: comparison of linear discriminant analysis, logistic regression, and support vector machines. Forensic Sci Int 245:204.e1-204.e8. https://doi.org/10.1016/j.forsciint.2014.10.010 PubMed DOI
Toneva D, Nikolova S, Tasheva-Terzieva E, Zlatareva D, Lazarov N (2022) A geometric morphometric study on sexual dimorphism in viscerocranium. Biol 11(9):1333. https://doi.org/10.3390/biology11091333 DOI
Zhang M (2024) The application of forensic imaging to sex estimation: focus on skull and pelvic structures. Perspectives in Legal and Forensic Sciences 1(1):10005. https://doi.org/10.35534/plfs.2024.10005 DOI
Kuchař M, Pilmann Kotěrová A, Morávek A et al (2024) Automatic variable extraction from 3D coxal bone models for sex estimation using the DSP2 method. Int J Legal Med 138(6):2647–2658. https://doi.org/10.1007/s00414-024-03301-4 PubMed DOI PMC
Mitteroecker P, Gunz P (2009) Advances in geometric morphometrics. Evol Biol 36:235–247. https://doi.org/10.1007/s11692-009-9055-x DOI
Adams DC, Rohlf FJ, Slice DE (2004) Geometric morphometrics: ten years of progress following the ‘revolution.’ Ital J Zool 71(1):5–16. https://doi.org/10.1080/11250000409356545 DOI
Mitteroecker P, Schaefer K (2022) Thirty years of geometric morphometrics: achievements, challenges, and the ongoing quest for biological meaningfulness. Am J Biol Anthropol 178:181–210. https://doi.org/10.1002/ajpa.24531 PubMed DOI PMC
Papaloucas C, Fiska A, Demetriou T (2008) Sexual dimorphism of the hip joint in Greeks. Forensic Sci Int 179(1):17–19. https://doi.org/10.1016/j.forsciint.2008.03.007 DOI
Peckmann TR, Orr K, Meek S, Manolis SK (2015) Sex determination from the calcaneus in a 20th century Greek population using discriminant function analysis. Sci Justice 55(6):377–382. https://doi.org/10.1016/j.scijus.2015.04.009 PubMed DOI
Swift L, Obertova Z, Flavel A, Murray K, Franklin D (2023) Estimation of sex from cranial measurements in an Australian population. Aust J Forensic Sci 55(6):755–770. https://doi.org/10.1080/00450618.2022.2081358 DOI
Bruzek J (2002) A method for visual determination of sex, using the human hip bone. Am J Phys Anthropol 117:157–168. https://doi.org/10.1002/ajpa.10012 PubMed DOI
Klales AR (2020) Sex estimation using pelvis morphology. Sex Estimation of the human skeleton. Academic, pp 75–93. https://doi.org/10.1016/B978-0-12-815767-1.00006-7
Chovalopoulou ME, Valakos E, Nikita E (2022) Skeletal sex estimation methods based on the Athens collection. Forensic Sci 2(4):715–724. https://doi.org/10.3390/forensicsci2040053 DOI
Bruzek J, Murail P (2006) Methodology and reliability of sex determination from the skeleton. In: Schmitt A, Cunha E, Pinheiro J (eds) Forensic Anthropology and Medicine: Complementary Sciences From Recovery to Cause of Death. Humana Press Inc., New Jersey, pp 225–242. https://doi.org/10.1007/978-1-59745-099-7_9
Garvin HM, Klales AR (2020) Adult skeletal sex Estimation and global standardization. In: Parra RC, Zapico SC, Ubelaker DH (eds) Forensic science and humanitarian action. Wiley, Ltd, pp 199–209. https://doi.org/10.1002/9781119482062.ch14
Rogers TL (2005) Determining the sex of human remains through cranial morphology. J Forensic Sci 50(3):1–8 DOI
Kranioti EF, Iscan MY, Michalodimitrakis M (2008) Craniometric analysis of the modern Cretan population. Forensic Sci Int 180(2–3):110e1-110e5. https://doi.org/10.1016/j.forsciint.2008.06.018 DOI
Garvin HM, Ruff CB (2012) Sexual dimorphism in skeletal browridge and chin morphologies determined using a new quantitative method. Am J Phys Anthropol 147:661–670. https://doi.org/10.1002/ajpa.22036 PubMed DOI
Avent PR, Hughes CE, Garvin HM (2022) Applying posterior probability informed thresholds to traditional cranial trait sex estimation methods. J Forensic Sci 67(2):440–449. https://doi.org/10.1111/1556-4029.14947 PubMed DOI
Krishan K, Chatterjee PM, Kanchan T et al (2016) A review of sex estimation techniques during examination of skeletal remains in forensic anthropology casework. Forensic Sci Int 261:165.e1-165.e8. https://doi.org/10.1016/j.forsciint.2016.02.007 PubMed DOI
Attia MH, Attia MH, Farghaly YT et al (2022a) Performance of the supervised learning algorithms in sex estimation of the proximal femur: a comparative study in contemporary Egyptian and Turkish samples. Sci Justice 62:288–309. https://doi.org/10.1016/j.scijus.2022.03.003 DOI
Attia MH, Kholief MA, Zaghloul NM et al (2022b) Efficiency of the adjusted binary classification (ABC) approach in osteometric sex estimation: a comparative study of different linear machine learning algorithms and training sample sizes. Biology 11:917. https://doi.org/10.3390/biology11060917 PubMed DOI PMC
Boucherie A (2023) Analyse du dimorphisme sexuel de vari ables métriques de la base du crâne: intérêts archéo-anthro pologiques et forensiques. Dissertation. Université Libre de Bruxelles
Pilmann Kotěrová A, Santos F, Bejdová Š et al (2024) Prioritizing a high posterior probability threshold leading to low error rate over high classification accuracy: the validity of morphopasse software for cranial morphological sex estimation in a contemporary population. Int J Legal Med 138:1759–1768. https://doi.org/10.1007/s00414-024-03215-1 PubMed DOI
Rmoutilová R, Piskačová K, Pilmann Kotěrová A, Dupej J, Bejdová Š, Velemínská J, Brůžek J (2024) Classification performance of the Sella-Tunis et al. (2017) sex estimation method in Czech population: different posterior probability threshold approaches. Int J Legal Med 138:2127–2138. https://doi.org/10.1007/s00414-024-03241-z PubMed DOI
Frayer DW, Wolpoff MH (1985) Sexual dimorphism. Annu Rev Anthropol 14:429–473. https://doi.org/10.1146/annurev.an.14.100185.002241 DOI
Moore FR, Coetzee V, Contreras-Garduno J et al (2013) Cross-cultural variation in women’s preferences for cues to sex- and stress-hormones in the male face. Biol Lett 9(3):10–13. https://doi.org/10.1098/rsbl.2013.0050 DOI
Milella M, Franklin D, Belcastro MG, Cardini A (2021) Sexual differences in human cranial morphology: is one sex more variable or one region more dimorphic? Anat Rec 304(12):2789–2810. https://doi.org/10.1002/ar.24626 DOI
Tise ML, Kimmerle EH, Spradley MK (2014) Craniometric variation of diverse populations in Florida: identification challenges within a border state. Ann Anthropol Pract 38(1):111–123. https://doi.org/10.1111/napa.12046 DOI
Krüger GC, L’Abbé EN, Stull KE, Kenyhercz MW (2015) Sexual dimorphism in cranial morphology among modern South Africans. Int J Legal Med 129:869–875. https://doi.org/10.1007/s00414-014-1111-0 PubMed DOI
Bertsatos A, Chovalopoulou ME, Brůžek J, Bejdová Š (2020) Advanced procedures for skull sex estimation using sexually dimorphic morphometric features. Int J Legal Med 134(5):1927–1937. https://doi.org/10.1007/s00414-020-02334-9 PubMed DOI
Bulut O, Petaros A, Hizliol I, Wärmländer SKTS, Hekimoglu B (2016) Sexual dimorphism in frontal bone roundness quantified by a novel 3D-based and landmar-free method. Forensic Sci Int 261:162e1–162e5. https://doi.org/10.1016/j.forsciint.2016.01.028 DOI
Murphy RE, Garvin HM (2018) A morphometric outline analysis of ancestry and sex differences in cranial shape. J Forensic Sci 63(4):1001–1009. https://doi.org/10.1111/1556-4029.13699 PubMed DOI
Musilová B, Dupej J, Brůžek J, Bejdová Š, Velemínská J (2019) Sex and ancestry related differences between two central European populations determined using exocranial meshes. Forensic Sci Int 297:364–369. https://doi.org/10.1016/j.forsciint.2019.02.034 PubMed DOI
Spradley MK (2021) Use of craniometric data to facilitate migrant identifications at the united States/Mexico border. Am J Phys Anthropol 175(2):486–496. https://doi.org/10.1002/ajpa.24241 PubMed DOI
Noble J, Flavel A, Aviv R, Franklin D (2019) Forensic anthropological standards for cranial sex estimation in canada: preliminary results. Aust J Forensic Sci 51:S1–S4. https://doi.org/10.1080/00450618.2019.1569720 DOI
Čechová M, Dupej J, Brůžek J, Bejdová Š, Velemínská J (2021) A test of the Bulut et al. (2016) landmark-free method of quantifying sex diferences in frontal bone roundness in a contemporary Czech sample. J Forensic Sci 66:694–699. https://doi.org/10.1111/1556-4029.14603 PubMed DOI
Jantz RL, Meadows Jantz L (2000) Secular change in craniofacial morphology. Am J Hum Biol 12:327–338. https://doi.org/10.1002/(SICI)1520-6300(200005/06)12:3%3C327::AID-AJHB3%3E3.0.CO;2-1
Guyomarch P, Velemínská J, Sedlak P (2016) Impact of secular trends on sex assessment evaluated through femoral dimensions of the Czech population. Forensic Sci Int 262:284e1-284e6. https://doi.org/10.1016/j.forsciint.2016.02.042 DOI
Manthey L, Jantz RL, Bohnert M, Jellinghaus K (2017) Secular change of sexually dimorphic cranial variables in Euro-Americans and Germans. Int J Legal Med 131:1113–1118. https://doi.org/10.1007/s00414-016-1469-2 PubMed DOI
Brůžek J, Santos F, Dutailly B, Murail P, Cunha E (2017) Validation and reliability of the sex estimation of the human Os coxae using freely available DSP2 software for bioarchaeology and forensic anthropology. Am J Phys Anthropol 164(2):440–449. https://doi.org/10.1002/ajpa.23282 PubMed DOI
Dupej J, Krajíček V, Velemínská J, Pelikán J Statistical mesh shape analysis with nonlandmark nonrigid registration. Poster presented at 12th Symposium on Geometry Processing; 9–11 Jul 2014, Cardiff, UK
Dimitriadou AE, Hornik K, Leisch F, Meyer D, Weingessel A, Friedrichleischr-projectorg MFL (2010) Misc functions of the department of statistics (e1071). TU Wien
Bishop CM (2006) Pattern recognition and machine learning. Springer, New York
Abdi H, Williams LJ (2010) Principal component analysis. Wiley Interdisciplinary Reviews: Comput Stat 2(4):433–459. https://doi.org/10.1002/wics.101 DOI
Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20:273–297. https://doi.org/10.1007/BF00994018 DOI
Susmaga R (2004) Confusion Matrix Visualization. Intelligent Information Processing and Web Mining. pp 107–116. https://doi.org/10.1007/978-3-540-39985-8_12
Musilová B, Dupej J, Velemínská J, Chaumoitre K, Bružek J (2016) Exocranial surfaces for sex assessment of the human cranium. Forensic Sci Int 269:70–77. https://doi.org/10.1016/j.forsciint.2016.11.006 PubMed DOI
Del Bove A, Profico A, Riga A, Bucchi A, Lorenzo C (2020) A geometric morphometric approach to the study of sexual dimorphism in the modern human frontal bone. Am J Phys Anthropol 173(4):643–654. https://doi.org/10.1002/ajpa.24154 PubMed DOI
Del Bove A, Veneziano A (2022) A generalised neural network model to estimate sex from cranial metric traits: a robust training and testing approach. Appl Sci 12(18):9285. https://doi.org/10.3390/app12189285 DOI
Kimmerle EH, Ross A, Slice D (2008) Sexual dimorphism in America: geometric morphometric analysis of the craniofacial region. J Forensic Sci 53(1):54–57. https://doi.org/10.1111/j.1556-4029.2007.00627.x PubMed DOI
Green H, Curnoe D (2009) Sexual dimorphism in Southeast Asian crania: a geometric morphometric approach. HOMO-Journal Comp Hum Biology 60(6):517–534. https://doi.org/10.1016/j.jchb.2009.09.001 DOI
Gillet C, Costa-Mendes L, Rérolle C, Telmon N, Maret D, Savall F (2020) Sex estimation in the cranium and mandible: a multislice computed tomography (MSCT) study using anthropometric and geometric morphometry methods. Int J Legal Med 134:823–832. https://doi.org/10.1007/s00414-019-02203-0 PubMed DOI
Kenyhercz MW, Klales AR, Stull KE, McCormick KA, Cole SJ (2017) Worldwide population variation in pelvic sexual dimorphism: a validation and recalibration of the Klales et al. method. Forensic Sci Int 277:259e1-259e8. https://doi.org/10.1016/j.forsciint.2017.05.001 DOI
Kelley SR, Tallman SD (2022) Population-inclusive assigned-sex-at-birth estimation from skull computed tomography scans. Forensic Sci 2(2):321–348. https://doi.org/10.3390/forensicsci2020024 DOI
Nikita P, Garoufi N, Valakos E, Constantinou C, Nikita E, Chovalopoulou M (2024) Testing the accuracy of the SexEst software for sex estimation in a modern Greek sample. Int J Osteoarchaeol 34(2):e3283. https://doi.org/10.1002/oa.3283 DOI
Hamanová Čechová M, Cvrček J, Dupej J et al (2024) The influence of biological relatedness on sexual dimorphism and sex classification based on external morphology of the frontal bone. Int J Legal Med 138:1727–1740. https://doi.org/10.1007/s00414-024-03185-4 PubMed DOI
Meinerová T, Šutoová D, Havelková PB, Velemínská J, Dupej J, Bejdová Š (2023) How reliable is the application of the sex classifier based on exocranial surface (Musilová et al., 2016) for geographically and temporally distant skull series. Forensic Sci Int 352:111850. https://doi.org/10.1016/j.forsciint.2023.111850 PubMed DOI
Klales AR (2020) Sex Estimation of the human skeleton: history, methods, and emerging techniques. Academic, London
Martin R, Saller K (1957) Lehrbuch der Anthropologie. Gustav Fischer, Stuttgart