Fluorescence Quenching Properties and Bioimaging Applications of Readily Accessible Blue to Far-Red Fluorogenic Triazinium Salts
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
41456330
PubMed Central
PMC12814330
DOI
10.1021/jacs.5c17428
Knihovny.cz E-zdroje
- MeSH
- fluorescence MeSH
- fluorescenční barviva * chemie chemická syntéza MeSH
- lidé MeSH
- molekulární struktura MeSH
- optické zobrazování * MeSH
- soli chemie MeSH
- triaziny * chemie chemická syntéza MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fluorescenční barviva * MeSH
- soli MeSH
- triaziny * MeSH
Fluorogenic probes, which become fluorescent only upon specific activation, enable no-wash imaging with an excellent signal-to-noise ratio. Despite significant progress in the development of such probes, challenges remain in achieving efficient quenching and substantial fluorescence enhancement across the whole visible spectrum while maintaining good synthetic accessibility. In this work, we introduce a new class of bioorthogonally activatable fluorogenic probes based on triazinium salts (Trz+), which act as highly efficient fluorescence quenchers. These Trz+-fluorophore conjugates are easily synthesized from common precursors and commercially available fluorophores, covering a broad spectral range from blue to far-red wavelengths. Mechanistic studies provide molecular insights into the quenching mechanism, attributed to the charged Trz+ core, which triggers substantial fluorescence turn-on upon bioorthogonal reaction with a strained dienophile. The versatility and ease of synthesis of these probes, along with their noteworthy photophysical properties, make them highly valuable for a wide range of bioimaging applications, including the visualization of intracellular organelles, drug molecules, HaloTag fusion proteins, genetically encoded intra- and extracellular proteins, cell surface antigens, and metabolically labeled glycoconjugates.
Zobrazit více v PubMed
Wang L., Frei M. S., Salim A., Johnsson K.. Small-Molecule Fluorescent Probes for Live-Cell Super-Resolution Microscopy. J. Am. Chem. Soc. 2019;141(7):2770–2781. doi: 10.1021/jacs.8b11134. PubMed DOI
Grimm J. B., Lavis L. D.. Caveat fluorophore: an insiders’ guide to small-molecule fluorescent labels. Nat. Methods. 2022;19(2):149–158. doi: 10.1038/s41592-021-01338-6. PubMed DOI
de Moliner F., Nadal-Bufi F., Vendrell M.. Recent advances in minimal fluorescent probes for optical imaging. Curr. Opin. Chem. Biol. 2024;80:102458. doi: 10.1016/j.cbpa.2024.102458. PubMed DOI
Keppler A., Gendreizig S., Gronemeyer T., Pick H., Vogel H., Johnsson K.. A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat. Biotechnol. 2003;21(1):86–89. doi: 10.1038/nbt765. PubMed DOI
Lemke E. A.. The Exploding Genetic Code. ChemBioChem.- 2014;15(12):1691–1694. doi: 10.1002/cbic.201402362. PubMed DOI
Pang Z., Schafroth M. A., Ogasawara D., Wang Y., Nudell V., Lal N. K., Yang D., Wang K., Herbst D. M., Ha J., Guijas C., Blankman J. L., Cravatt B. F., Ye L.. In situ identification of cellular drug targets in mammalian tissue. Cell. 2022;185(10):1793–1805.e1717. doi: 10.1016/j.cell.2022.03.040. PubMed DOI PMC
Fernández-Suárez M., Ting A. Y.. Fluorescent probes for super-resolution imaging in living cells. Nat. Rev. Mol. Cell Biol. 2008;9(12):929–943. doi: 10.1038/nrm2531. PubMed DOI
Wieczorek A., Werther P., Euchner J., Wombacher R.. Green- to far-red-emitting fluorogenic tetrazine probes – synthetic access and no-wash protein imaging inside living cells. Chem. Sci. 2017;8(2):1506–1510. doi: 10.1039/C6SC03879D. PubMed DOI PMC
Shieh P., Bertozzi C. R.. Design strategies for bioorthogonal smart probes. Org. Biomol. Chem. 2014;12(46):9307–9320. doi: 10.1039/C4OB01632G. PubMed DOI PMC
Chen Y., Jiang H., Hao T., Zhang N., Li M., Wang X., Wang X., Wei W., Zhao J.. Fluorogenic Reactions in Chemical Biology: Seeing Chemistry in Cells. Chem. Biomed. Imaging. 2023;1(7):590–619. doi: 10.1021/cbmi.3c00029. PubMed DOI PMC
Nadler A., Schultz C.. The Power of Fluorogenic Probes. Angew. Chem., Int. Ed. 2013;52(9):2408–2410. doi: 10.1002/anie.201209733. PubMed DOI
Zhao H., He Y., Lo Y., Song H., Lu J.. Fluorescent probes based on bioorthogonal reactions: Construction strategies and applications. TrAC, Trends Anal. Chem. 2023;169:117388. doi: 10.1016/j.trac.2023.117388. DOI
Kozma E., Kele P.. Bioorthogonal Reactions in Bioimaging. Top. Curr. Chem. 2024;382(1):7. doi: 10.1007/s41061-024-00452-1. PubMed DOI PMC
Zielke F. M., Rutjes F. P. J. T.. Recent Advances in Bioorthogonal Ligation and Bioconjugation. Top. Curr. Chem. 2023;381(6):35. doi: 10.1007/s41061-023-00445-6. PubMed DOI PMC
Šlachtová V., Chovanec M., Rahm M., Vrabel M.. Bioorthogonal Chemistry in Cellular Organelles. Top. Curr. Chem. 2024;382(1):2. doi: 10.1007/s41061-023-00446-5. PubMed DOI PMC
Chyan W., Raines R. T.. Enzyme-Activated Fluorogenic Probes for Live-Cell and in Vivo Imaging. ACS Chem. Biol. 2018;13(7):1810–1823. doi: 10.1021/acschembio.8b00371. PubMed DOI PMC
Weissleder R.. A clearer vision for in vivo imaging. Nat. Biotechnol. 2001;19(4):316–317. doi: 10.1038/86684. PubMed DOI
Jiang G., Liu H., Liu H., Ke G., Ren T.-B., Xiong B., Zhang X.-B., Yuan L.. Chemical Approaches to Optimize the Properties of Organic Fluorophores for Imaging and Sensing. Angew. Chem., Int. Ed. 2024;63(11):e202315217. doi: 10.1002/anie.202315217. PubMed DOI
Munan S., Chang Y.-T., Samanta A.. Chronological development of functional fluorophores for bio-imaging. Chem. Commun. 2024;60(5):501–521. doi: 10.1039/D3CC04895K. PubMed DOI
Lemieux G. A., de Graffenried C. L., Bertozzi C. R.. A Fluorogenic Dye Activated by the Staudinger Ligation. J. Am. Chem. Soc. 2003;125(16):4708–4709. doi: 10.1021/ja029013y. PubMed DOI
Sivakumar K., Xie F., Cash B. M., Long S., Barnhill H. N., Wang Q.. A fluorogenic 1,3-dipolar cycloaddition reaction of 3-azidocoumarins and acetylenes. Org. Lett. 2004;6(24):4603–4606. doi: 10.1021/ol047955x. PubMed DOI
Jewett J. C., Bertozzi C. R.. Synthesis of a fluorogenic cyclooctyne activated by Cu-free click chemistry. Org. Lett. 2011;13(22):5937–5939. doi: 10.1021/ol2025026. PubMed DOI PMC
Herner A., Nikić I., Kállay M., Lemke E. A., Kele P.. A new family of bioorthogonally applicable fluorogenic labels. Org. Biomol. Chem. 2013;11(20):3297–3306. doi: 10.1039/c3ob40296g. PubMed DOI
Shieh P., Dien V. T., Beahm B. J., Castellano J. M., Wyss-Coray T., Bertozzi C. R.. CalFluors: A Universal Motif for Fluorogenic Azide Probes across the Visible Spectrum. J. Am. Chem. Soc. 2015;137(22):7145–7151. doi: 10.1021/jacs.5b02383. PubMed DOI PMC
Friscourt F., Fahrni C. J., Boons G. J.. A fluorogenic probe for the catalyst-free detection of azide-tagged molecules. J. Am. Chem. Soc. 2012;134(45):18809–18815. doi: 10.1021/ja309000s. PubMed DOI PMC
Zhang L., Zhang X., Yao Z., Jiang S., Deng J., Li B., Yu Z.. Discovery of Fluorogenic Diarylsydnone-Alkene Photoligation: Conversion of ortho-Dual-Twisted Diarylsydnones into Planar Pyrazolines. J. Am. Chem. Soc. 2018;140(24):7390–7394. doi: 10.1021/jacs.8b02493. PubMed DOI
Plougastel L., Pattanayak M. R., Riomet M., Bregant S., Sallustrau A., Nothisen M., Wagner A., Audisio D., Taran F.. Sydnone-based turn-on fluorogenic probes for no-wash protein labeling and in-cell imaging. Chem. Commun. 2019;55(31):4582–4585. doi: 10.1039/C9CC01458F. PubMed DOI
Cserép G. B., Németh K., Szatmári A., Horváth F., Imre T., Németh K., Kele P.. Beyond the Bioorthogonal Inverse-Electron-Demand Diels-Alder Reactions of Tetrazines: 2-Pyrone-Functionalized Fluorogenic Probes. Synthesis. 2022;54(17):3858–3866. doi: 10.1055/a-1761-4672. DOI
Song W., Wang Y., Qu J., Madden M. M., Lin Q.. A Photoinducible 1,3-Dipolar Cycloaddition Reaction for Rapid, Selective Modification of Tetrazole-Containing Proteins. Angew. Chem., Int. Ed. 2008;47(15):2832–2835. doi: 10.1002/anie.200705805. PubMed DOI
Song W., Wang Y., Qu J., Lin Q.. Selective Functionalization of a Genetically Encoded Alkene-Containing Protein via “Photoclick Chemistry” in Bacterial Cells. J. Am. Chem. Soc. 2008;130(30):9654–9655. doi: 10.1021/ja803598e. PubMed DOI
Zhang H., Fang M., Lin Q.. Photo-activatable Reagents for Bioorthogonal Ligation Reactions. Top. Curr. Chem. 2023;382(1):1. doi: 10.1007/s41061-023-00447-4. PubMed DOI PMC
Shang X., Lai R., Song X., Li H., Niu W., Guo J.. Improved Photoinduced Fluorogenic Alkene-Tetrazole Reaction for Protein Labeling. Bioconjugate Chem. 2017;28(11):2859–2864. doi: 10.1021/acs.bioconjchem.7b00562. PubMed DOI PMC
An P., Lin Q.. Sterically shielded tetrazoles for a fluorogenic photoclick reaction: tuning cycloaddition rate and product fluorescence. Org. Biomol. Chem. 2018;16(29):5241–5244. doi: 10.1039/C8OB01404C. PubMed DOI PMC
Vázquez A., Dzijak R., Dračínský M., Rampmaier R., Siegl S. J., Vrabel M.. Mechanism-Based Fluorogenic trans-Cyclooctene–Tetrazine Cycloaddition. Angew. Chem., Int. Ed. 2017;56(5):1334–1337. doi: 10.1002/anie.201610491. PubMed DOI PMC
Siegl S. J., Galeta J., Dzijak R., Vázquez A., Del Río-Villanueva M., Dračínský M., Vrabel M.. An Extended Approach for the Development of Fluorogenic trans-Cyclooctene–Tetrazine Cycloadditions. ChemBioChem. 2019;20(7):886–890. doi: 10.1002/cbic.201800711. PubMed DOI PMC
Siegl S. J., Galeta J., Dzijak R., Dračínský M., Vrabel M.. Bioorthogonal Fluorescence Turn-On Labeling Based on Bicyclononyne–Tetrazine Cycloaddition Reactions that Form Pyridazine Products. ChemPlusChem. 2019;84(5):493–497. doi: 10.1002/cplu.201900176. PubMed DOI PMC
Mao W., Tang J., Dai L., He X., Li J., Cai L., Liao P., Jiang R., Zhou J., Wu H.. A General Strategy to Design Highly Fluorogenic Far-Red and Near-Infrared Tetrazine Bioorthogonal Probes. Angew. Chem., Int. Ed. 2021;60(5):2393–2397. doi: 10.1002/anie.202011544. PubMed DOI
Oliveira B. L., Guo Z., Bernardes G. J. L.. Inverse electron demand Diels–Alder reactions in chemical biology. Chem. Soc. Rev. 2017;46(16):4895–4950. doi: 10.1039/C7CS00184C. PubMed DOI
Blackman M. L., Royzen M., Fox J. M.. Tetrazine Ligation: Fast Bioconjugation Based on Inverse-Electron-Demand Diels–Alder Reactivity. J. Am. Chem. Soc. 2008;130(41):13518–13519. doi: 10.1021/ja8053805. PubMed DOI PMC
Devaraj N. K., Weissleder R., Hilderbrand S. A.. Tetrazine-Based Cycloadditions: Application to Pretargeted Live Cell Imaging. Bioconjugate Chem. 2008;19(12):2297–2299. doi: 10.1021/bc8004446. PubMed DOI PMC
Arsić A., Hagemann C., Stajković N., Schubert T., Nikić-Spiegel I.. Minimal genetically encoded tags for fluorescent protein labeling in living neurons. Nat. Commun. 2022;13(1):314. doi: 10.1038/s41467-022-27956-y. PubMed DOI PMC
Devaraj N. K., Hilderbrand S., Upadhyay R., Mazitschek R., Weissleder R.. Bioorthogonal Turn-On Probes for Imaging Small Molecules inside Living Cells. Angew. Chem., Int. Ed. 2010;49(16):2869–2872. doi: 10.1002/anie.200906120. PubMed DOI PMC
Carlson J. C. T., Meimetis L. G., Hilderbrand S. A., Weissleder R.. BODIPY–Tetrazine Derivatives as Superbright Bioorthogonal Turn-on Probes. Angew. Chem., Int. Ed. 2013;52(27):6917–6920. doi: 10.1002/anie.201301100. PubMed DOI PMC
Meimetis L. G., Carlson J. C. T., Giedt R. J., Kohler R. H., Weissleder R.. Ultrafluorogenic Coumarin–Tetrazine Probes for Real-Time Biological Imaging. Angew. Chem., Int. Ed. 2014;53(29):7531–7534. doi: 10.1002/anie.201403890. PubMed DOI PMC
Galeta J., Dzijak R., Obořil J., Dračínský M., Vrabel M.. A Systematic Study of Coumarin–Tetrazine Light-Up Probes for Bioorthogonal Fluorescence Imaging. Chem. - Eur. J. 2020;26(44):9945–9953. doi: 10.1002/chem.202001290. PubMed DOI PMC
Pinto-Pacheco B., Carbery W. P., Khan S., Turner D. B., Buccella D.. Fluorescence Quenching Effects of Tetrazines and Their Diels–Alder Products: Mechanistic Insight Toward Fluorogenic Efficiency. Angew. Chem., Int. Ed. 2020;59(49):22140–22149. doi: 10.1002/anie.202008757. PubMed DOI
Svatunek D.. Computational Organic Chemistry: The Frontier for Understanding and Designing Bioorthogonal Cycloadditions. Top. Curr. Chem. 2024;382(2):17. doi: 10.1007/s41061-024-00461-0. PubMed DOI PMC
Wieczorek A., Buckup T., Wombacher R.. Rigid tetrazine fluorophore conjugates with fluorogenic properties in the inverse electron demand Diels-Alder reaction. Org. Biomol. Chem. 2014;12(24):4177–4185. doi: 10.1039/C4OB00245H. PubMed DOI
Son H., Kim D., Kim S., Gi Byun W., Bum Park S.. Unveiling the Structure-Fluorogenic Property Relationship of Seoul-Fluor-Derived Bioorthogonal Tetrazine Probes. Angew. Chem., Int. Ed. 2025;64(12):e202421982. doi: 10.1002/anie.202421982. PubMed DOI
Wu H., Devaraj N. K.. Advances in Tetrazine Bioorthogonal Chemistry Driven by the Synthesis of Novel Tetrazines and Dienophiles. Acc. Chem. Res. 2018;51(5):1249–1259. doi: 10.1021/acs.accounts.8b00062. PubMed DOI PMC
Fang Y., Hillman A. S., Fox J. M.. Advances in the Synthesis of Bioorthogonal Reagents: s-Tetrazines, 1,2,4-Triazines, Cyclooctynes, Heterocycloheptynes, and trans-Cyclooctenes. Top. Curr. Chem. 2024;382(2):15. doi: 10.1007/s41061-024-00455-y. PubMed DOI PMC
Wu H., Yang J., Šečkutė J., Devaraj N. K.. In Situ Synthesis of Alkenyl Tetrazines for Highly Fluorogenic Bioorthogonal Live-Cell Imaging Probes. Angew. Chem., Int. Ed. 2014;53(23):5805–5809. doi: 10.1002/anie.201400135. PubMed DOI PMC
Wieczorek A., Werther P., Euchner J., Wombacher R.. Green- to far-red-emitting fluorogenic tetrazine probes - synthetic access and no-wash protein imaging inside living cells. Chem. Sci. 2017;8(2):1506–1510. doi: 10.1039/C6SC03879D. PubMed DOI PMC
Kozma E., Estrada Girona G., Paci G., Lemke E. A., Kele P.. Bioorthogonal double-fluorogenic siliconrhodamine probes for intracellular super-resolution microscopy. Chem. Commun. 2017;53(50):6696–6699. doi: 10.1039/C7CC02212C. PubMed DOI
Kormos A., Kern D., Egyed A., Soveges B., Nemeth K., Kele P.. Microscope laser assisted photooxidative activation of bioorthogonal ClickOx probes. Chem. Commun. 2020;56(40):5425–5428. doi: 10.1039/D0CC01512A. PubMed DOI
Kim D., Son H., Park S. B.. Ultrafluorogenic Monochromophore-Type BODIPY-Tetrazine Series for Dual-Color Bioorthogonal Imaging with a Single Probe. Angew. Chem., Int. Ed. 2023;62(52):e202310665. doi: 10.1002/ange.202316220. PubMed DOI
He Z., Ishizuka T., Hishikawa Y., Xu Y.. Click chemistry for fluorescence imaging via combination of a BODIPY-based ‘turn-on’ probe and a norbornene glucosamine. Chem. Commun. 2022;58(89):12479–12482. doi: 10.1039/D2CC05359D. PubMed DOI
Lee Y., Cho W., Sung J., Kim E., Park S. B.. Monochromophoric Design Strategy for Tetrazine-Based Colorful Bioorthogonal Probes with a Single Fluorescent Core Skeleton. J. Am. Chem. Soc. 2018;140(3):974–983. doi: 10.1021/jacs.7b10433. PubMed DOI
Auvray M., Naud-Martin D., Fontaine G., Bolze F., Clavier G., Mahuteau-Betzer F.. Ultrabright two-photon excitable red-emissive fluorogenic probes for fast and wash-free bioorthogonal labelling in live cells. Chem. Sci. 2023;14(30):8119–8128. doi: 10.1039/D3SC01754K. PubMed DOI PMC
Chen L., Li F., Li Y., Yang J., Li Y., He B.. Red-emitting fluorogenic BODIPY-tetrazine probes for biological imaging. Chem. Commun. 2021;58(2):298–301. doi: 10.1039/D1CC05863K. PubMed DOI
Aktalay A., Lincoln R., Heynck L., Lima M., Butkevich A. N., Bossi M. L., Hell S. W.. Bioorthogonal Caging-Group-Free Photoactivatable Probes for Minimal-Linkage-Error Nanoscopy. ACS Cent. Sci. 2023;9(8):1581–1590. doi: 10.1021/acscentsci.3c00746. PubMed DOI PMC
Işık M., Kisacam M. A.. Readily Accessible and Brightly Fluorogenic BODIPY/NBD-Tetrazines via S(N)Ar Reactions. J. Org. Chem. 2024;89(9):6513–6519. doi: 10.1021/acs.joc.3c02864. PubMed DOI PMC
Choi S.-K., Kim J., Kim E.. Overview of Syntheses and Molecular-Design Strategies for Tetrazine-Based Fluorogenic Probes. Molecules. 2021;26(7):1868. doi: 10.3390/molecules26071868. PubMed DOI PMC
Shen T., Liu X.. Unveiling the photophysical mechanistic mysteries of tetrazine-functionalized fluorogenic labels. Chem. Sci. 2025;16(16):4595–4613. doi: 10.1039/D4SC07018F. PubMed DOI PMC
Werther P., Yserentant K., Braun F., Grußmayer K., Navikas V., Yu M., Zhang Z., Ziegler M. J., Mayer C., Gralak A. J., Busch M., Chi W., Rominger F., Radenovic A., Liu X., Lemke E. A., Buckup T., Herten D.-P., Wombacher R.. Bio-orthogonal Red and Far-Red Fluorogenic Probes for Wash-Free Live-Cell and Super-resolution Microscopy. ACS Cent. Sci. 2021;7(9):1561–1571. doi: 10.1021/acscentsci.1c00703. PubMed DOI PMC
Beliu G., Kurz A. J., Kuhlemann A. C., Behringer-Pliess L., Meub M., Wolf N., Seibel J., Shi Z.-D., Schnermann M., Grimm J. B., Lavis L. D., Doose S., Sauer M.. Bioorthogonal labeling with tetrazine-dyes for super-resolution microscopy. Commun. Biol. 2019;2:261. doi: 10.1038/s42003-019-0518-z. PubMed DOI PMC
Šlachtová V., Bellová S., La-Venia A., Galeta J., Dračínský M., Chalupský K., Dvořáková A., Mertlíková-Kaiserová H., Rukovanský P., Dzijak R., Vrabel M.. Triazinium Ligation: Bioorthogonal Reaction of N1-Alkyl 1,2,4-Triazinium Salts. Angew. Chem., Int. Ed. 2023;62(36):e202306828. doi: 10.1002/anie.202306828. PubMed DOI
Šlachtová V., Bellová S., Vrabel M.. Synthesis of C3-Substituted N1-tert-Butyl 1,2,4-Triazinium Salts via the Liebeskind–Srogl Reaction for Fluorogenic Labeling of Live Cells. J. Org. Chem. 2024;89(20):14634–14640. doi: 10.1021/acs.joc.3c02454. PubMed DOI PMC
Karver M. R., Weissleder R., Hilderbrand S. A.. Synthesis and Evaluation of a Series of 1,2,4,5-Tetrazines for Bioorthogonal Conjugation. Bioconjugate Chem. 2011;22(11):2263–2270. doi: 10.1021/bc200295y. PubMed DOI PMC
Kozma E., Estrada Girona G., Paci G., Lemke E. A., Kele P.. Bioorthogonal Double-fluorogenic siliconrhodamine probes for intracellular super-resolution microscopy. Chem. Commun. 2017;53(50):6696–6699. doi: 10.1039/C7CC02212C. PubMed DOI
Cañeque T., Müller S., Rodriguez R.. Visualizing biologically active small molecules in cells using click chemistry. Nat. Rev. Chem. 2018;2(9):202–215. doi: 10.1038/s41570-018-0030-x. DOI
Smith R. A. J., Porteous C. M., Gane A. M., Murphy M. P.. Delivery of bioactive molecules to mitochondria in vivo. Proc. Natl. Acad. Sci. U.S.A. 2003;100(9):5407–5412. doi: 10.1073/pnas.0931245100. PubMed DOI PMC
Fukuyo Y., Hunt C. R., Horikoshi N.. Geldanamycin and its anti-cancer activities. Cancer Lett. 2010;290(1):24–35. doi: 10.1016/j.canlet.2009.07.010. PubMed DOI
Llauger-Bufi L., Felts S. J., Huezo H., Rosen N., Chiosis G.. Synthesis of novel fluorescent probes for the molecular chaperone Hsp90. Bioorg. Med. Chem. Lett. 2003;13(22):3975–3978. doi: 10.1016/j.bmcl.2003.08.065. PubMed DOI
Olivieri A., Manzione L.. Dasatinib: a new step in molecular target therapy. Ann. Oncol. 2007;18:vi42–vi46. doi: 10.1093/annonc/mdm223. PubMed DOI
Goldstein, I. J. , Poretz, R. D. . Isolation, Physicochemical Characterization, and Carbohydrate-Binding Specificity of Lectins. In The Lectins. Properties, Functions, and Applications in Biology and Medicine.; Liener, I. E. , Sharon, N. , Goldstein, I. J. , Eds.; Elsevier, 1986; Vol. 32, pp 33–247.
Nahta R., Esteva F. J.. Trastuzumab: triumphs and tribulations. Oncogene. 2007;26(25):3637–3643. doi: 10.1038/sj.onc.1210379. PubMed DOI
Carter P., Presta L., Gorman C. M., Ridgway J. B., Henner D., Wong W. L., Rowland A. M., Kotts C., Carver M. E., Shepard H. M.. Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc. Natl. Acad. Sci. U.S.A. 1992;89(10):4285–4289. doi: 10.1073/pnas.89.10.4285. PubMed DOI PMC
Los G. V., Encell L. P., McDougall M. G., Hartzell D. D., Karassina N., Zimprich C., Wood M. G., Learish R., Ohana R. F., Urh M., Simpson D., Mendez J., Zimmerman K., Otto P., Vidugiris G., Zhu J., Darzins A., Klaubert D. H., Bulleit R. F., Wood K. V.. HaloTag: A Novel Protein Labeling Technology for Cell Imaging and Protein Analysis. ACS Chem. Biol. 2008;3(6):373–382. doi: 10.1021/cb800025k. PubMed DOI
England C. G., Luo H., Cai W.. HaloTag technology: a versatile platform for biomedical applications. Bioconjugate Chem. 2015;26(6):975–986. doi: 10.1021/acs.bioconjchem.5b00191. PubMed DOI PMC
Murrey H. E., Judkins J. C., am Ende C. W., Ballard T. E., Fang Y., Riccardi K., Di L., Guilmette E. R., Schwartz J. W., Fox J. M., Johnson D. S.. Systematic Evaluation of Bioorthogonal Reactions in Live Cells with Clickable HaloTag Ligands: Implications for Intracellular Imaging. J. Am. Chem. Soc. 2015;137(35):11461–11475. doi: 10.1021/jacs.5b06847. PubMed DOI PMC
Liu C. C., Schultz P. G.. Adding New Chemistries to the Genetic Code. Annu. Rev. Biochem. 2010;79:413–444. doi: 10.1146/annurev.biochem.052308.105824. PubMed DOI
Lee K. J., Kang D., Park H. S.. Site-Specific Labeling of Proteins Using Unnatural Amino Acids. Mol. Cells. 2019;42(5):386–396. doi: 10.14348/molcells.2019.0078. PubMed DOI PMC
Lang K., Davis L., Wallace S., Mahesh M., Cox D. J., Blackman M. L., Fox J. M., Chin J. W.. Genetic Encoding of Bicyclononynes and trans-Cyclooctenes for Site-Specific Protein Labeling in Vitro and in Live Mammalian Cells via Rapid Fluorogenic Diels–Alder Reactions. J. Am. Chem. Soc. 2012;134(25):10317–10320. doi: 10.1021/ja302832g. PubMed DOI PMC
Borrmann A., Milles S., Plass T., Dommerholt J., Verkade J. M. M., Wießler M., Schultz C., van Hest J. C. M., van Delft F. L., Lemke E. A.. Genetic Encoding of a Bicyclo[6.1.0]nonyne-Charged Amino Acid Enables Fast Cellular Protein Imaging by Metal-Free Ligation. ChemBioChem. 2012;13(14):2094–2099. doi: 10.1002/cbic.201200407. PubMed DOI
Goon S., Bertozzi C. R.. Metabolic Substrate Engineering as a Tool for Glycobiology. J. Carbohydr. Chem. 2002;21(7–9):943–977. doi: 10.1081/CAR-120016493. DOI
Yoon H. Y., Koo H., Kim K., Kwon I. C.. Molecular imaging based on metabolic glycoengineering and bioorthogonal click chemistry. Biomaterials. 2017;132:28–36. doi: 10.1016/j.biomaterials.2017.04.003. PubMed DOI
Agard N. J., Bertozzi C. R.. Chemical approaches to perturb, profile, and perceive glycans. Acc. Chem. Res. 2009;42(6):788–797. doi: 10.1021/ar800267j. PubMed DOI PMC
Agarwal P., Beahm B. J., Shieh P., Bertozzi C. R.. Systemic Fluorescence Imaging of Zebrafish Glycans with Bioorthogonal Chemistry. Angew. Chem., Int. Ed. 2015;54(39):11504–11510. doi: 10.1002/anie.201504249. PubMed DOI PMC