Symmetry, microscopy and spectroscopy signatures of altermagnetism
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
41566009
DOI
10.1038/s41586-025-09883-2
PII: 10.1038/s41586-025-09883-2
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The recent discovery of altermagnetism was in part motivated by the research of compensated magnets towards highly scalable spintronic technologies. Simultaneously, altermagnetism shares the anisotropic higher-partial-wave nature of ordering with unconventional superfluid phases, which have been at the forefront of research for the past several decades. These examples illustrate the interest in altermagnetism from a broad range of science and technology perspectives. Here we review the symmetry, microscopy and spectroscopy signatures of altermagnetism. We describe the spontaneously broken and retained symmetries that delineate altermagnetism as a distinct phase of matter with d-, g- or i-wave compensated collinear spin ordering. In materials ranging from weakly interacting metals to strongly correlated insulators, the microscopic crystal-structure realizations of the altermagnetic symmetries feature a characteristic ferroic order of anisotropic higher-partial-wave components of atomic-scale spin densities. These symmetry and microscopy signatures of altermagnetism are directly reflected in spin-dependent electronic spectra and responses. We review salient band-structure features originating from the altermagnetic ordering, and from its interplay with spin-orbit coupling and topological phenomena. Throughout, we compare altermagnetism with traditional ferromagnetism and Néel antiferromagnetism, and with magnetic phases with symmetry-protected compensated non-collinear spin orders. We accompany the theoretical discussions with references to relevant experiments.
Center for Emergent Matter Science RIKEN Saitama Japan
Department of Applied Physics University of Tokyo Tokyo Japan
Department of Physics University of Tokyo Tokyo Japan
Institut für Physik Johannes Gutenberg Universität Mainz Mainz Germany
Institute for Solid State Physics University of Tokyo Kashiwa Japan
Institute of Physics Czech Academy of Sciences Prague Czech Republic
Max Planck Institute for Chemical Physics of Solids Dresden Germany
Max Planck Institute for the Physics of Complex Systems Dresden Germany
School of Physics and Astronomy University of Nottingham Nottingham UK
Trans scale Quantum Science Institute University of Tokyo Tokyo Japan
Zobrazit více v PubMed
Šmejkal, L., Sinova, J. & Jungwirth, T. Beyond conventional ferromagnetism and antiferromagnetism: a phase with nonrelativistic spin and crystal rotation symmetry. Phys. Rev. X 12, 031042 (2022). This paper delineated altermagnetism as an exclusively distinct spin-group symmetry class of d-, g- or i-wave spin-ordered phases.
Šmejkal, L., Sinova, J. & Jungwirth, T. Emerging research landscape of altermagnetism. Phys. Rev. X 12, 040501 (2022). This perspective outlined envisaged research directions of altermagnetism.
Šmejkal, L., González-Hernández, R., Jungwirth, T. & Sinova, J. Crystal time-reversal symmetry breaking and spontaneous Hall effect in collinear antiferromagnets. Sci. Adv. 6, eaaz8809 (2020). This paper predicted that an interplay of crystal and collinear spin orders in a class of materials can lead to a time-reversal-symmetry-breaking spin-split electronic structure and, when spin–orbit coupling is included, to the anomalous Hall effect. PubMed DOI PMC
Jungwirth, T. et al. Altermagnetism: an unconventional spin-ordered phase of matter. Newton 1, 100162 (2025). DOI
Mazin, I. I. Notes on altermagnetism and superconductivity. AAPPS Bull. 35, 18 (2025). These informal notes, originally posted as a preprint on the arXiv server, aimed to stimulate the exploration of the interplay of altermagnetism with superconductivity. DOI
Beenakker, C. W. J. & Vakhtel, T. Phase-shifted Andreev levels in an altermagnet Josephson junction. Phys. Rev. B 108, 075425 (2023). DOI
Mazin, I., González-Hernández, R. & Šmejkal, L. Induced monolayer altermagnetism in MnP(S,Se)
Brekke, B., Brataas, A. & Sudbø, A. Two-dimensional altermagnets: superconductivity in a minimal microscopic model. Phys. Rev. B 108, 224421 (2023). DOI
Li, Y.-X. & Liu, C.-C. Majorana corner modes and tunable patterns in an altermagnet heterostructure. Phys. Rev. B 108, 205410 (2023). DOI
Zhu, D., Zhuang, Z.-Y., Wu, Z. & Yan, Z. Topological superconductivity in two-dimensional altermagnetic metals. Phys. Rev. B 108, 184505 (2023). DOI
Sumita, S., Naka, M. & Seo, H. Fulde–Ferrell–Larkin–Ovchinnikov state induced by antiferromagnetic order in k-type organic conductors. Phys. Rev. Res. 5, 043171 (2023). DOI
Ghorashi, S. A. A., Hughes, T. L. & Cano, J. Altermagnetic routes to Majorana modes in zero net magnetization. Phys. Rev. Lett. 133, 106601 (2024). PubMed DOI
Papaj, M. Andreev reflection at the altermagnet-superconductor interface. Phys. Rev. B 108, L060508 (2023). DOI
Wei, M. et al. Gapless superconducting state and mirage gap in altermagnets. Phys. Rev. B 109, L201404 (2023). DOI
Zhang, S.-B., Hu, L.-H. & Neupert, T. Finite-momentum Cooper pairing in proximitized altermagnets. Nat. Commun. 15, 1801 (2024). PubMed DOI PMC
Cheng, Q. & Sun, Q.-F. Orientation-dependent Josephson effect in spin-singlet superconductor/altermagnet/spin-triplet superconductor junctions. Phys. Rev. B 109, 024517 (2024). DOI
Zhao, Y. et al. Hybrid-order topology in unconventional magnets of Eu-based Zintl compounds with surface-dependent quantum geometry. Phys. Rev. B 110, 205111 (2024). DOI
Mæland, K., Brekke, B. & Sudbø, A. Many-body effects on superconductivity mediated by double-magnon processes in altermagnets. Phys. Rev. B 109, 134515 (2024). DOI
Chakraborty, D. & Black-Schaffer, A. M. Zero-field finite-momentum and field-induced superconductivity in altermagnets. Phys. Rev. B 110, L060508 (2024). DOI
Banerjee, S. & Scheurer, M. S. Altermagnetic superconducting diode effect. Phys. Rev. B 110, 024503 (2024). DOI
Jeschke, H. O., Shimizu, M. & Mazin, I. I. CuAg(SO DOI
Verbeek, X. H., Urru, A. & Spaldin, N. A. Hidden orders and (anti-)magnetoelectric effects in Cr DOI
Bernardini, F., Fiebig, M. & Cano, A. Ruddlesden–Popper and perovskite phases as a material platform for altermagnetism. J. Appl. Phys. 137, 103903 (2025).
Zyuzin, A. A. Magnetoelectric effect in superconductors with d-wave magnetization. Phys. Rev. B 109, L220505 (2024). DOI
Sim, G. & Knolle, J. Pair density waves and supercurrent diode effect in altermagnets. Phys. Rev. B 112, L020502 (2025). DOI
Hu, J.-X., Matsyshyn, O. & Song, J. C. W. Nonlinear superconducting magnetoelectric effect. Phys. Rev. Lett. 134, 026001 (2025). PubMed DOI
Šmejkal, L. Altermagnetic multiferroics and altermagnetoelectric effect. Preprint at http://arxiv.org/abs/2411.19928 (2024). This paper and refs. 28 and 29 theoretically predicted an interplay of altermagnetism with ferroelectricity.
Duan, X. et al. Antiferroelectric altermagnets: antiferroelectricity alters magnets. Phys. Rev. Lett. 134, 106801 (2025). PubMed DOI
Gu, M. et al. Ferroelectric switchable altermagnetism. Phys. Rev. Lett. 134, 106802 (2024). DOI
Parthenios, N. et al. Spin and pair density waves in two-dimensional altermagnetic metals. Phys. Rev. B 112, 214410 (2025).
Šmejkal, L., MacDonald, A. H., Sinova, J., Nakatsuji, S. & Jungwirth, T. Anomalous Hall antiferromagnets. Nat. Rev. Mater. 7, 482–496 (2022). This paper reviewed the anomalous Hall effect in altermagnets and non-collinear compensated magnets. DOI
Bai, L. et al. Altermagnetism: exploring new frontiers in magnetism and spintronics. Adv. Funct. Mater. 34, 2409327 (2024).
Liu, Q., Dai, X. & Blügel, S. Different facets of unconventional magnetism. Nat. Phys. 21, 329–331 (2025). DOI
Song, C. et al. Altermagnets as a new class of functional materials. Nat. Rev. Mater. 10, 473–485 (2025).
Jungwirth, T. et al. Altermagnetic spintronics. Preprint at http://arxiv.org/abs/2508.09748 (2025).
Liu, P., Li, J., Han, J., Wan, X. & Liu, Q. Spin-group symmetry in magnetic materials with negligible spin–orbit coupling. Phys. Rev. X 12, 21016 (2022). This paper discusses spin space-group symmetries of magnetic materials and corresponding band degeneracies and emergent topological phases.
Litvin, D. B. & Opechowski, W. Spin groups. Physica 76, 538–554 (1974). This paper describes the mathematical spin-group formalism. DOI
Andreev, A. & Grishchuk, I. Spin nematics. Sov. Phys. JETP 60, 267 (1984).
Gor’kov, L. P. & Sokol, A. Nontrivial magnetic order: localized versus itinerant systems. Phys. Rev. Lett. 69, 2586–2589 (1992). PubMed DOI
Leggett, A. J. Nobel Lecture: Superfluid 3-He: the early days as seen by a theorist. Rev. Mod. Phys. 76, 999 (2004). This paper reviews the superfluid phase of DOI
Moessner, R. & Moore, J. E. Topological Phases of Matter (Cambridge Univ. Press, 2021).
Strange, P. Relativistic Quantum Mechanics 1 edn (Cambridge Univ. Press, Cambridge, 1998).
Winkler, R. Spin–Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems Springer Tracts in Modern Physics Vol. 191 (Springer, 2003).
Landau, L. & Lifshitz, E. Electrodynamics of Continuous Media 2 edn, Course of Theoretical Physics Vol. 8 (Pergamon Press, 1965).
Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. H. & Jungwirth, T. Spin Hall effects. Rev. Mod. Phys. 87, 1213–1260 (2015). DOI
Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010). DOI
Franz, M. & Molenkamp, L. (eds) Contemporary Concepts of Condensed Matter Science Topological Insulators Vol. 6 (Elsevier, 2013).
Murakami, S. & Yokoyama, T. Quantum Spin Hall Effect and Topological Insulators Vol. 1 (Oxford Univ. Press, 2017).
Bradlyn, B. et al. Topological quantum chemistry. Nature 547, 298–305 (2017). PubMed DOI
Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018). DOI
Elcoro, L. et al. Magnetic topological quantum chemistry. Nat. Commun. 12, 5965 (2021). PubMed DOI PMC
Mazin, I. I., Koepernik, K., Johannes, M. D., González-Hernández, R. & Šmejkal, L. Prediction of unconventional magnetism in doped FeSb PubMed DOI PMC
Reichlova, H. et al. Observation of a spontaneous anomalous Hall response in the Mn PubMed DOI PMC
Šmejkal, L., Hellenes, A. B., González-Hernández, R., Sinova, J. & Jungwirth, T. Giant and tunneling magnetoresistance in unconventional collinear antiferromagnets with nonrelativistic spin–momentum coupling. Phys. Rev. X 12, 011028 (2022).
Gonzalez Betancourt, R. D. et al. Spontaneous anomalous Hall effect arising from an unconventional compensated magnetic phase in a semiconductor. Phys. Rev. Lett. 130, 036702 (2023). PubMed DOI
Šmejkal, L. et al. Chiral magnons in altermagnetic RuO PubMed DOI
Chen, X. et al. Unconventional magnons in collinear magnets dictated by spin space groups. Nature 640, 349–354 (2025). PubMed DOI PMC
Hariki, A. et al. X-ray magnetic circular dichroism in altermagnetic α-MnTe. Phys. Rev. Lett. 132, 176701 (2024). PubMed DOI
Hellenes, A. B. et al. P-wave magnets. Preprint at http://arxiv.org/abs/2309.01607 (2023).
Hellenes, A. B., Jungwirth, T., Sinova, J. & Šmejkal, L. Exchange spin–orbit coupling and unconventional p-wave magnetism. Preprint at http://arxiv.org/abs/2309.01607v1 (2023).
McClarty, P. A. & Rau, J. G. Landau theory of altermagnetism. Phys. Rev. Lett. 132, 176702 (2023). DOI
Smolyanyuk, A., Šmejkal, L. & Mazin, I. I. A tool to check whether a symmetry-compensated collinear magnetic material is antiferro- or altermagnetic. SciPost Phys. Codebases 30, 1–16 (2024).
Shinohara, K. et al. Algorithm for spin symmetry operation search. Acta Crystallogr. A 80, 94–103 (2024). DOI
Watanabe, H., Shinohara, K., Nomoto, T., Togo, A. & Arita, R. Symmetry analysis with spin crystallographic groups: disentangling effects free of spin–orbit coupling in emergent electromagnetism. Phys. Rev. B 109, 094438 (2024). DOI
Jiang, Y. et al. Enumeration of spin-space groups: toward a complete description of symmetries of magnetic orders. Phys. Rev. X 14, 031039 (2024).
Zhu, H., Li, J., Chen, X., Yu, Y. & Liu, Q. Magnetic geometry induced quantum geometry and nonlinear transports. Nat. Commun. 16, 4882 (2025). PubMed DOI PMC
Chen, X. et al. Enumeration and representation theory of spin space groups. Phys. Rev. X 14, 031038 (2024).
Schiff, H., Corticelli, A., Guerreiro, A., Romhányi, J. & McClarty, P. The crystallographic spin point groups and their representations. SciPost Phys. 18, 109 (2025).
Xiao, Z., Zhao, J., Li, Y., Shindou, R. & Song, Z.-D. Spin space groups: full classification and applications. Phys. Rev. X 14, 031037 (2024).
Litvin, D. B. Magnetic Group Tables (IUCr, 2013). http://www.iucr.org/publ/978-0-9553602-2-0 .
Berlijn, T. et al. Itinerant antiferromagnetism in RuO PubMed DOI
Zhu, Z. H. et al. Anomalous antiferromagnetism in metallic RuO PubMed DOI
Lovesey, S. W., Khalyavin, D. D. & van der Laan, G. Magnetic properties of RuO DOI
Occhialini, C. A. et al. Local electronic structure of rutile RuO DOI
Feng, Z. et al. An anomalous Hall effect in altermagnetic ruthenium dioxide. Nat. Electron. 5, 735–743 (2022). DOI
Bose, A. et al. Tilted spin current generated by the collinear antiferromagnet ruthenium dioxide. Nat. Electron. 5, 267–274 (2022). DOI
Bai, H. et al. Observation of spin splitting torque in a collinear antiferromagnet RuO PubMed DOI
Karube, S. et al. Observation of spin-splitter torque in collinear antiferromagnetic RuO PubMed DOI
Lovesey, S. W., Khalyavin, D. D. & van der Laan, G. Magnetic structure of RuO DOI
Liu, Y. et al. Inverse altermagnetic spin splitting effect-induced terahertz emission in RuO DOI
Fedchenko, O. et al. Observation of time-reversal symmetry breaking in the band structure of altermagnetic RuO DOI
Smolyanyuk, A., Mazin, I. I., Garcia-Gassull, L. & Valentí, R. Fragility of the magnetic order in the prototypical altermagnet RuO DOI
Lin, Z. et al. Observation of giant spin splitting and d-wave spin texture in room temperature altermagnet RuO
Keßler, P. et al. Absence of magnetic order in RuO
Li, Z. et al. Fully field-free spin-orbit torque switching induced by spin splitting effect in altermagnetic RuO
Wenzel, M. et al. Fermi-liquid behavior of nonaltermagnetic RuO DOI
Jeong, S. G. et al. Altermagnetic polar metallic phase in ultra-thin epitaxially-strained RuO
Hiraishi, M. et al. Nonmagnetic ground state in RuO PubMed DOI
López-Moreno, S., Romero, A. H., Mejía-López, J. & Muñoz, A. First-principles study of pressure-induced structural phase transitions in MnF PubMed DOI
Noda, Y., Ohno, K. & Nakamura, S. Momentum-dependent band spin splitting in semiconducting MnO PubMed DOI
Hayami, S., Yanagi, Y. & Kusunose, H. Momentum-dependent spin splitting by collinear antiferromagnetic ordering. J. Phys. Soc. Jpn 88, 123702 (2019). DOI
Yuan, L.-D., Wang, Z., Luo, J.-W., Rashba, E. I. & Zunger, A. Giant momentum-dependent spin splitting in centrosymmetric low-Z antiferromagnets. Phys. Rev. B 102, 014422 (2020). DOI
Bhowal, S. & Spaldin, N. A. Ferroically ordered magnetic octupoles in d-wave altermagnets. Phys. Rev. X 14, 011019 (2024).
Jaeschke-Ubiergo, R. et al. Atomic altermagnetism. Preprint at https://arxiv.org/pdf/2503.10797 (2025).
Lovesey, S. W., Khalyavin, D. D. & van der Laan, G. Templates for magnetic symmetry and altermagnetism in hexagonal MnTe. Phys. Rev. B 108, 174437 (2023). DOI
Mazin, I. I. Altermagnetism in MnTe: origin, predicted manifestations, and routes to detwinning. Phys. Rev. B 107, L100418 (2023). DOI
Krempaský, J. et al. Altermagnetic lifting of Kramers spin degeneracy. Nature 626, 517–522 (2024). This paper and refs. 99–101 reported experimental spectroscopic observations of a g-wave altermagnetic band structure of MnTe. PubMed DOI PMC
Lee, S. S. et al. Broken Kramers degeneracy in altermagnetic MnTe. Phys. Rev. Lett. 132, 036702 (2024). PubMed DOI
Osumi, T. et al. Observation of a giant band splitting in altermagnetic MnTe. Phys. Rev. B 109, 115102 (2024). DOI
Hajlaoui, M. et al. Temperature dependence of relativistic valence band splitting induced by an altermagnetic phase transition. Adv. Mater. 36, 2314076 (2024). DOI
Aoyama, T. & Ohgushi, K. Piezomagnetic properties in altermagnetic MnTe. Phys. Rev. Mater. 8, L041402 (2024). DOI
Kluczyk, K. P. et al. Coexistence of anomalous Hall effect and weak magnetization in a nominally collinear antiferromagnet MnTe. Phys. Rev. B 110, 155201 (2024). DOI
Reimers, S. et al. Direct observation of altermagnetic band splitting in CrSb thin films. Nat. Commun. 15, 2116 (2024). PubMed DOI PMC
Yang, G. et al. Three-dimensional mapping of the altermagnetic spin splitting in CrSb. Nat. Commun. 16, 1442 (2025). PubMed DOI PMC
Ding, J. et al. Large band splitting in g-wave altermagnet CrSb. Phys. Rev. Lett. 133, 206401 (2024). PubMed DOI
Li, C. et al. Topological Weyl altermagnetism in CrSb. Commun. Phys. 8, 311 (2025).
Lu, W. et al. Signature of topological surface bands in altermagnetic Weyl semimetal CrSb. Nano Lett. 25, 7343–7350 (2025). PubMed DOI PMC
Zeng, M. et al. Observation of spin splitting in room-temperature metallic antiferromagnet CrSb. Adv. Sci. 11, 2406529 (2024). DOI
Dale, N. et al. Non-relativistic spin splitting above and below the Fermi level in a g-wave altermagnet. Preprint at http://arxiv.org/abs/2411.18761 (2024).
Liu, Z., Ozeki, M., Asai, S., Itoh, S. & Masuda, T. Chiral-split magnon in altermagnetic MnTe. Phys. Rev. Lett. 133, 156702 (2024). PubMed DOI
Jiang, B. et al. A metallic room-temperature d-wave altermagnet. Nat. Phys. 21, 754–759 (2025). This paper and ref. 113 reported experimental spectroscopic observations of a d-wave altermagnetic band structure. DOI
Zhang, F. et al. Crystal-symmetry-paired spin–valley locking in a layered room-temperature metallic altermagnet candidate. Nat. Phys. 21, 760–767 (2025). DOI
Antonenko, D. S., Fernandes, R. M. & Venderbos, J. W. F. Mirror Chern bands and Weyl nodal loops in altermagnets. Phys. Rev. Lett. 134, 096703 (2025). This paper reported a theoretical study of topological phenomena in 2D (Lieb lattice) and 3D minimal models of altermagnetism. PubMed DOI
Kaushal, N. & Franz, M. Altermagnetism in modified Lieb lattice Hubbard model. Phys. Rev. Lett. 135, 156502 (2025).
Wei, C. C. et al. La DOI
Maharaj, D. D. et al. Octupolar versus Néel order in cubic 5d DOI
Néel, L. Magnetism and local molecular field. Science 174, 985–992 (1971). PubMed DOI
Chakraborty, A., González Hernández, R., Šmejkal, L. & Sinova, J. Strain-induced phase transition from antiferromagnet to altermagnet. Phys. Rev. B 109, 144421 (2024). DOI
Liu, Y., Yu, J. & Liu, C.-C. Twisted magnetic van der Waals bilayers: an ideal platform for altermagnetism. Phys. Rev. Lett. 133, 206702 (2024). PubMed DOI
Leeb, V., Mook, A., Šmejkal, L. & Knolle, J. Spontaneous formation of altermagnetism from orbital ordering. Phys. Rev. Lett. 132, 236701 (2024). PubMed DOI
Fernandes, R. M., de Carvalho, V. S., Birol, T. & Pereira, R. G. Topological transition from nodal to nodeless Zeeman splitting in altermagnets. Phys. Rev. B 109, 024404 (2024). DOI
Das, S., Suri, D. & Soori, A. Transport across junctions of altermagnets with normal metals and ferromagnets. J. Phys. Condensed Matter 35, 435302 (2023). DOI
Maier, T. A. & Okamoto, S. Weak-coupling theory of neutron scattering as a probe of altermagnetism. Phys. Rev. B 108, L100402 (2023). DOI
Sato, T., Haddad, S., Fulga, I. C., Assaad, F. F. & van den Brink, J. Altermagnetic anomalous Hall effect emerging from electronic correlations. Phys. Rev. Lett. 133, 086503 (2024). PubMed DOI
Roig, M., Kreisel, A., Yu, Y., Andersen, B. M. & Agterberg, D. F. Minimal models for altermagnetism. Phys. Rev. B 110, 144412 (2024). DOI
Bose, A., Vadnais, S. & Paramekanti, A. Altermagnetism and superconductivity in a multiorbital t–J model. Phys. Rev. B 110, 205120 (2024). DOI
Ferrari, F. & Valentí, R. Altermagnetism on the Shastry–Sutherland lattice. Phys. Rev. B 110, 205140 (2024). DOI
Rooj, S., Saxena, S. & Ganguli, N. Altermagnetism in the orthorhombic Pnm structure through group theory and DFT calculations. Phys. Rev. B 111, 014434 (2025). DOI
Töpfer, J. & Goodenough, J. LaMnO DOI
Chen, H., Niu, Q. & Macdonald, A. H. Anomalous Hall effect arising from noncollinear antiferromagnetism. Phys. Rev. Lett. 112, 017205 (2014). This paper predicted the anomalous Hall effect in a non-collinear compensated magnet. PubMed DOI
Zhou, J. et al. Predicted quantum topological Hall effect and noncoplanar antiferromagnetism in K PubMed DOI
Feng, W. et al. Topological magneto-optical effects and their quantization in noncoplanar antiferromagnets. Nat. Commun. 11, 118 (2020). PubMed DOI PMC
Ahn, K.-H., Hariki, A., Lee, K.-W. & Kuneš, J. Antiferromagnetism in RuO DOI
Naka, M. et al. Spin current generation in organic antiferromagnets. Nat. Commun. 10, 4305 (2019). PubMed DOI PMC
Guo, Y. et al. Spin-split collinear antiferromagnets: a large-scale ab-initio study. Mater. Today Phys. 32, 100991 (2023). DOI
Ma, H.-Y. et al. Multifunctional antiferromagnetic materials with giant piezomagnetism and noncollinear spin current. Nat. Commun. 12, 2846 (2021). PubMed DOI PMC
Egorov, S. A. & Evarestov, R. A. Colossal spin splitting in the monolayer of the collinear antiferromagnet MnF PubMed DOI
Cui, Q., Zhu, Y., Yao, X., Cui, P. & Yang, H. Giant spin-Hall and tunneling magnetoresistance effects based on a two-dimensional nonrelativistic antiferromagnetic metal. Phys. Rev. B 108, 024410 (2023). DOI
Chen, X., Wang, D., Li, L. & Sanyal, B. Giant spin-splitting and tunable spin-momentum locked transport in room temperature collinear antiferromagnetic semimetallic CrO monolayer. Appl. Phys. Lett. 123, 022402 (2023).
Sødequist, J. & Olsen, T. Two-dimensional altermagnets from high throughput computational screening: symmetry requirements, chiral magnons, and spin–orbit effects. Appl. Phys. Lett. 124, 182409 (2024). DOI
Zhu, Y.-P. et al. Observation of plaid-like spin splitting in a noncoplanar antiferromagnet. Nature 626, 523–528 (2024). PubMed DOI
Zhu, Y. et al. Multipiezo effect in altermagnetic V PubMed DOI
Wigner, E. Ueber die Operation der Zeitumkehr in der Quantenmechanik. Nachr. Ges. Wiss. Gott. Math. Phys. Kl. 1932, 546–559 (1932).
Tang, P., Zhou, Q., Xu, G. & Zhang, S.-C. Dirac fermions in an antiferromagnetic semimetal. Nat. Phys. 12, 1100–1104 (2016). DOI
Šmejkal, L., Železný, J., Sinova, J. & Jungwirth, T. Electric control of Dirac quasiparticles by spin–orbit torque in an antiferromagnet. Phys. Rev. Lett. 118, 106402 (2017). PubMed DOI
Šmejkal, L., Mokrousov, Y., Yan, B. & MacDonald, A. H. Topological antiferromagnetic spintronics. Nat. Phys. 14, 242–251 (2018). DOI
Kübler, J. & Felser, C. Non-collinear antiferromagnets and the anomalous Hall effect. Europhys. Lett. 108, 67001 (2014). DOI
Nakatsuji, S., Kiyohara, N. & Higo, T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 527, 212–215 (2015). This paper reported the experimental observation of the anomalous Hall effect in a non-collinear compensated magnet. PubMed DOI
Kiyohara, N., Tomita, T. & Nakatsuji, S. Giant anomalous Hall effect in the chiral antiferromagnet Mn DOI
Nayak, A. K. et al. Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn PubMed DOI PMC
Takagi, H. et al. Spontaneous topological Hall effect induced by non-coplanar antiferromagnetic order in intercalated van der Waals materials. Nat. Phys. 19, 961–968 (2023). DOI
Ikhlas, M. et al. Large anomalous Nernst effect at room temperature in a chiral antiferromagnet. Nat. Phys. 13, 1085–1090 (2017). DOI
Li, X. et al. Anomalous Nernst and Righi-Leduc effects in Mn PubMed DOI
Higo, T. et al. Large magneto-optical Kerr effect and imaging of magnetic octupole domains in an antiferromagnetic metal. Nat. Photon. 12, 73–78 (2018). DOI
Matsuda, T., Kanda, N., Higo, T. & Matsunaga, R. Room-temperature terahertz anomalous Hall effect in Weyl antiferromagnet Mn PubMed DOI PMC
Kimata, M. et al. X-ray study of ferroic octupole order producing anomalous Hall effect. Nat. Commun. 12, 5582 (2021). PubMed DOI PMC
Sakamoto, S. et al. Observation of spontaneous X-ray magnetic circular dichroism in a chiral antiferromagnet. Phys. Rev. B 104, 134431 (2021). DOI
Železný, J., Zhang, Y., Felser, C. & Yan, B. Spin-polarized current in noncollinear antiferromagnets. Phys. Rev. Lett. 119, 187204 (2017). PubMed DOI
Zhang, Y., Železný, J., Sun, Y., van den Brink, J. & Yan, B. Spin Hall effect emerging from a noncollinear magnetic lattice without spin–orbit coupling. New J. Phys. 20, 073028 (2018). DOI
Kimata, M. et al. Magnetic and magnetic inverse spin Hall effects in a non-collinear antiferromagnet. Nature 565, 627–630 (2019). PubMed DOI
Hu, S. et al. Efficient perpendicular magnetization switching by a magnetic spin Hall effect in a noncollinear antiferromagnet. Nat. Commun. 13, 4447 (2022). PubMed DOI PMC
Tsai, H. et al. Electrical manipulation of a topological antiferromagnetic state. Nature 580, 608–613 (2020). PubMed DOI
Takeuchi, Y. et al. Chiral-spin rotation of non-collinear antiferromagnet by spin–orbit torque. Nat. Mater. 20, 1364–1370 (2021). PubMed DOI
Higo, T. et al. Perpendicular full switching of chiral antiferromagnetic order by current. Nature 607, 474–479 (2022). PubMed DOI
Pal, B. et al. Setting of the magnetic structure of chiral kagome antiferromagnets by a seeded spin–orbit torque. Sci. Adv. 8, eabo5930 (2022). PubMed DOI PMC
Chen, X. et al. Octupole-driven magnetoresistance in an antiferromagnetic tunnel junction. Nature 613, 490–495 (2023). PubMed DOI PMC
Qin, P. et al. Room-temperature magnetoresistance in an all-antiferromagnetic tunnel junction. Nature 613, 485–489 (2023). PubMed DOI
Nakatsuji, S. & Arita, R. Topological magnets: functions based on Berry phase and multipoles. Annu. Rev. Condensed Matter Phys. 13, 119–142 (2022).
Rimmler, B. H., Pal, B. & Parkin, S. S. P. Non-collinear antiferromagnetic spintronics. Nat. Rev. Mater. 10, 109–127 (2024).
Han, J., Yoon, J.-Y., Ohno, H. & Fukami, S. Unconventional responses in non-collinear antiferromagnets. Newton 1, 100012 (2025). DOI
Brekke, B., Sukhachov, P., Giil, H. G., Brataas, A. & Linder, J. Minimal models and transport properties of unconventional p-wave magnets. Phys. Rev. Lett. 133, 236703 (2024). PubMed DOI
Ezawa, M. Topological insulators and superconductors based on p-wave magnets: electrical control and detection of a domain wall. Phys. Rev. B 110, 165429 (2024). DOI
Sivianes, J., dos Santos, F. J. & Ibañez-Azpiroz, J. Optical signatures of spin symmetries in unconventional magnets. Phys. Rev. Lett. 134, 196907 (2025). PubMed DOI
Chakraborty, A. et al. Highly efficient non-relativistic Edelstein effect in p-wave magnets. Nat. Commun. 16, 7270 (2023). DOI
Yu, Y. et al. Odd-parity magnetism driven by antiferromagnetic exchange. Phys. Rev. Lett. 135, 046701 (2025).
Wang, M. et al. Emergent zero-field anomalous Hall effect in a reconstructed rutile antiferromagnetic metal. Nat. Commun. 14, 8240 (2023). PubMed DOI PMC
Han, L. et al. Electrical 180° switching of Néel vector in spin-splitting antiferromagnet. Sci. Adv. 10, eadn0479 (2024). PubMed DOI PMC
Takagi, R. et al. Spontaneous Hall effect induced by collinear antiferromagnetic order at room temperature. Nat. Mater. 24, 63–68 (2025). PubMed DOI
Ray, M. K. et al. Zero-field Hall effect emerging from a non-Fermi liquid in a collinear antiferromagnet V PubMed DOI PMC
Fakhredine, A., Sattigeri, R. M., Cuono, G. & Autieri, C. Interplay between altermagnetism and nonsymmorphic symmetries generating large anomalous Hall conductivity by semi-Dirac points induced anticrossings. Phys. Rev. B 108, 115138 (2023). DOI
Fang, Y., Cano, J. & Ghorashi, S. A. A. Quantum geometry induced nonlinear transport in altermagnets. Phys. Rev. Lett. 133, 106701 (2024). PubMed DOI
Li, Y.-X., Liu, Y. & Liu, C.-C. Creation and manipulation of higher-order topological states by altermagnets. Phys. Rev. B 109, L201109 (2024). DOI
Zhou, X. et al. Crystal thermal transport in altermagnetic RuO DOI
Zhan, J., Li, J., Shi, W., Chen, X. Q. & Sun, Y. Coexistence of Weyl semimetal and Weyl nodal loop semimetal phases in a collinear antiferromagnet. Phys. Rev. B 107, 224402 (2023). DOI
Nag, J. et al. GdAlSi: an antiferromagnetic topological Weyl semimetal with nonrelativistic spin splitting. Phys. Rev. B 110, 224436 (2024). DOI
Parshukov, K., Wiedmann, R. & Schnyder, A. P. Topological responses from gapped Weyl points in 2D altermagnets. Phys. Rev. B 111, 224406 (2025).
Rao, P., Mook, A. & Knolle, J. Tunable band topology and optical conductivity in altermagnets. Phys. Rev. B 110, 024425 (2024). DOI
Tao, L. L. & Tsymbal, E. Y. Persistent spin texture enforced by symmetry. Nat. Commun. 9, 2763 (2018). PubMed DOI PMC
Ji, J., Lou, F., Yu, R., Feng, J. S. & Xiang, H. J. Symmetry-protected full-space persistent spin texture in two-dimensional materials. Phys. Rev. B 105, L041404 (2022). DOI
Bernevig, B. A., Orenstein, J. & Zhang, S. C. Exact SU(2) symmetry and persistent spin helix in a spin–orbit coupled system. Phys. Rev. Lett. 97, 236601 (2006). PubMed DOI
Koralek, J. D. et al. Emergence of the persistent spin helix in semiconductor quantum wells. Nature 458, 610–613 (2009). PubMed DOI
Kuroda, K. et al. Evidence for magnetic Weyl fermions in a correlated metal. Nat. Mater. 16, 1090–1095 (2017). PubMed DOI
Liu, Z. Q. et al. Electrical switching of the topological anomalous Hall effect in a non-collinear antiferromagnet above room temperature. Nat. Electron. 1, 172–177 (2018). DOI
Xu, L. et al. Finite-temperature violation of the anomalous transverse Wiedemann–Franz law. Sci. Adv. 6, eaaz3522 (2020). PubMed DOI PMC
Chen, T. et al. Anomalous transport due to Weyl fermions in the chiral antiferromagnets Mn PubMed DOI PMC
Ghosh, S. et al. Raman spectroscopic evidence for linearly dispersed nodes and magnetic ordering in the topological semimetal V
Sun, K., Yao, H., Fradkin, E. & Kivelson, S. A. Topological insulators and nematic phases from spontaneous symmetry breaking in 2D Fermi systems with a quadratic band crossing. Phys. Rev. Lett. 103, 046811 (2009). PubMed DOI
Steward, C. R. W., Fernandes, R. M. & Schmalian, J. Dynamic paramagnon-polarons in altermagnets. Phys. Rev. B 108, 144418 (2023). DOI
Martin, I. & Batista, C. D. Itinerant electron-driven chiral magnetic ordering and spontaneous quantum Hall effect in triangular lattice models. Phys. Rev. Lett. 101, 156402 (2008). PubMed DOI
MAGNDATA: A Collection of Magnetic Structures with Portable cif-type Files. https://www.cryst.ehu.es/magndata/ .