Symmetry, microscopy and spectroscopy signatures of altermagnetism

. 2026 Jan ; 649 (8098) : 837-847. [epub] 20260121

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid41566009
Odkazy

PubMed 41566009
DOI 10.1038/s41586-025-09883-2
PII: 10.1038/s41586-025-09883-2
Knihovny.cz E-zdroje

The recent discovery of altermagnetism was in part motivated by the research of compensated magnets towards highly scalable spintronic technologies. Simultaneously, altermagnetism shares the anisotropic higher-partial-wave nature of ordering with unconventional superfluid phases, which have been at the forefront of research for the past several decades. These examples illustrate the interest in altermagnetism from a broad range of science and technology perspectives. Here we review the symmetry, microscopy and spectroscopy signatures of altermagnetism. We describe the spontaneously broken and retained symmetries that delineate altermagnetism as a distinct phase of matter with d-, g- or i-wave compensated collinear spin ordering. In materials ranging from weakly interacting metals to strongly correlated insulators, the microscopic crystal-structure realizations of the altermagnetic symmetries feature a characteristic ferroic order of anisotropic higher-partial-wave components of atomic-scale spin densities. These symmetry and microscopy signatures of altermagnetism are directly reflected in spin-dependent electronic spectra and responses. We review salient band-structure features originating from the altermagnetic ordering, and from its interplay with spin-orbit coupling and topological phenomena. Throughout, we compare altermagnetism with traditional ferromagnetism and Néel antiferromagnetism, and with magnetic phases with symmetry-protected compensated non-collinear spin orders. We accompany the theoretical discussions with references to relevant experiments.

Zobrazit více v PubMed

Šmejkal, L., Sinova, J. & Jungwirth, T. Beyond conventional ferromagnetism and antiferromagnetism: a phase with nonrelativistic spin and crystal rotation symmetry. Phys. Rev. X 12, 031042 (2022). This paper delineated altermagnetism as an exclusively distinct spin-group symmetry class of d-, g- or i-wave spin-ordered phases.

Šmejkal, L., Sinova, J. & Jungwirth, T. Emerging research landscape of altermagnetism. Phys. Rev. X 12, 040501 (2022). This perspective outlined envisaged research directions of altermagnetism.

Šmejkal, L., González-Hernández, R., Jungwirth, T. & Sinova, J. Crystal time-reversal symmetry breaking and spontaneous Hall effect in collinear antiferromagnets. Sci. Adv. 6, eaaz8809 (2020). This paper predicted that an interplay of crystal and collinear spin orders in a class of materials can lead to a time-reversal-symmetry-breaking spin-split electronic structure and, when spin–orbit coupling is included, to the anomalous Hall effect. PubMed DOI PMC

Jungwirth, T. et al. Altermagnetism: an unconventional spin-ordered phase of matter. Newton 1, 100162 (2025). DOI

Mazin, I. I. Notes on altermagnetism and superconductivity. AAPPS Bull. 35, 18 (2025). These informal notes, originally posted as a preprint on the arXiv server, aimed to stimulate the exploration of the interplay of altermagnetism with superconductivity. DOI

Beenakker, C. W. J. & Vakhtel, T. Phase-shifted Andreev levels in an altermagnet Josephson junction. Phys. Rev. B 108, 075425 (2023). DOI

Mazin, I., González-Hernández, R. & Šmejkal, L. Induced monolayer altermagnetism in MnP(S,Se)

Brekke, B., Brataas, A. & Sudbø, A. Two-dimensional altermagnets: superconductivity in a minimal microscopic model. Phys. Rev. B 108, 224421 (2023). DOI

Li, Y.-X. & Liu, C.-C. Majorana corner modes and tunable patterns in an altermagnet heterostructure. Phys. Rev. B 108, 205410 (2023). DOI

Zhu, D., Zhuang, Z.-Y., Wu, Z. & Yan, Z. Topological superconductivity in two-dimensional altermagnetic metals. Phys. Rev. B 108, 184505 (2023). DOI

Sumita, S., Naka, M. & Seo, H. Fulde–Ferrell–Larkin–Ovchinnikov state induced by antiferromagnetic order in k-type organic conductors. Phys. Rev. Res. 5, 043171 (2023). DOI

Ghorashi, S. A. A., Hughes, T. L. & Cano, J. Altermagnetic routes to Majorana modes in zero net magnetization. Phys. Rev. Lett. 133, 106601 (2024). PubMed DOI

Papaj, M. Andreev reflection at the altermagnet-superconductor interface. Phys. Rev. B 108, L060508 (2023). DOI

Wei, M. et al. Gapless superconducting state and mirage gap in altermagnets. Phys. Rev. B 109, L201404 (2023). DOI

Zhang, S.-B., Hu, L.-H. & Neupert, T. Finite-momentum Cooper pairing in proximitized altermagnets. Nat. Commun. 15, 1801 (2024). PubMed DOI PMC

Cheng, Q. & Sun, Q.-F. Orientation-dependent Josephson effect in spin-singlet superconductor/altermagnet/spin-triplet superconductor junctions. Phys. Rev. B 109, 024517 (2024). DOI

Zhao, Y. et al. Hybrid-order topology in unconventional magnets of Eu-based Zintl compounds with surface-dependent quantum geometry. Phys. Rev. B 110, 205111 (2024). DOI

Mæland, K., Brekke, B. & Sudbø, A. Many-body effects on superconductivity mediated by double-magnon processes in altermagnets. Phys. Rev. B 109, 134515 (2024). DOI

Chakraborty, D. & Black-Schaffer, A. M. Zero-field finite-momentum and field-induced superconductivity in altermagnets. Phys. Rev. B 110, L060508 (2024). DOI

Banerjee, S. & Scheurer, M. S. Altermagnetic superconducting diode effect. Phys. Rev. B 110, 024503 (2024). DOI

Jeschke, H. O., Shimizu, M. & Mazin, I. I. CuAg(SO DOI

Verbeek, X. H., Urru, A. & Spaldin, N. A. Hidden orders and (anti-)magnetoelectric effects in Cr DOI

Bernardini, F., Fiebig, M. & Cano, A. Ruddlesden–Popper and perovskite phases as a material platform for altermagnetism. J. Appl. Phys. 137, 103903 (2025).

Zyuzin, A. A. Magnetoelectric effect in superconductors with d-wave magnetization. Phys. Rev. B 109, L220505 (2024). DOI

Sim, G. & Knolle, J. Pair density waves and supercurrent diode effect in altermagnets. Phys. Rev. B 112, L020502 (2025). DOI

Hu, J.-X., Matsyshyn, O. & Song, J. C. W. Nonlinear superconducting magnetoelectric effect. Phys. Rev. Lett. 134, 026001 (2025). PubMed DOI

Šmejkal, L. Altermagnetic multiferroics and altermagnetoelectric effect. Preprint at http://arxiv.org/abs/2411.19928 (2024). This paper and refs. 28 and 29 theoretically predicted an interplay of altermagnetism with ferroelectricity.

Duan, X. et al. Antiferroelectric altermagnets: antiferroelectricity alters magnets. Phys. Rev. Lett. 134, 106801 (2025). PubMed DOI

Gu, M. et al. Ferroelectric switchable altermagnetism. Phys. Rev. Lett. 134, 106802 (2024). DOI

Parthenios, N. et al. Spin and pair density waves in two-dimensional altermagnetic metals. Phys. Rev. B 112, 214410 (2025).

Šmejkal, L., MacDonald, A. H., Sinova, J., Nakatsuji, S. & Jungwirth, T. Anomalous Hall antiferromagnets. Nat. Rev. Mater. 7, 482–496 (2022). This paper reviewed the anomalous Hall effect in altermagnets and non-collinear compensated magnets. DOI

Bai, L. et al. Altermagnetism: exploring new frontiers in magnetism and spintronics. Adv. Funct. Mater. 34, 2409327 (2024).

Liu, Q., Dai, X. & Blügel, S. Different facets of unconventional magnetism. Nat. Phys. 21, 329–331 (2025). DOI

Song, C. et al. Altermagnets as a new class of functional materials. Nat. Rev. Mater. 10, 473–485 (2025).

Jungwirth, T. et al. Altermagnetic spintronics. Preprint at http://arxiv.org/abs/2508.09748 (2025).

Liu, P., Li, J., Han, J., Wan, X. & Liu, Q. Spin-group symmetry in magnetic materials with negligible spin–orbit coupling. Phys. Rev. X 12, 21016 (2022). This paper discusses spin space-group symmetries of magnetic materials and corresponding band degeneracies and emergent topological phases.

Litvin, D. B. & Opechowski, W. Spin groups. Physica 76, 538–554 (1974). This paper describes the mathematical spin-group formalism. DOI

Andreev, A. & Grishchuk, I. Spin nematics. Sov. Phys. JETP 60, 267 (1984).

Gor’kov, L. P. & Sokol, A. Nontrivial magnetic order: localized versus itinerant systems. Phys. Rev. Lett. 69, 2586–2589 (1992). PubMed DOI

Leggett, A. J. Nobel Lecture: Superfluid 3-He: the early days as seen by a theorist. Rev. Mod. Phys. 76, 999 (2004). This paper reviews the superfluid phase of DOI

Moessner, R. & Moore, J. E. Topological Phases of Matter (Cambridge Univ. Press, 2021).

Strange, P. Relativistic Quantum Mechanics 1 edn (Cambridge Univ. Press, Cambridge, 1998).

Winkler, R. Spin–Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems Springer Tracts in Modern Physics Vol. 191 (Springer, 2003).

Landau, L. & Lifshitz, E. Electrodynamics of Continuous Media 2 edn, Course of Theoretical Physics Vol. 8 (Pergamon Press, 1965).

Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. H. & Jungwirth, T. Spin Hall effects. Rev. Mod. Phys. 87, 1213–1260 (2015). DOI

Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010). DOI

Franz, M. & Molenkamp, L. (eds) Contemporary Concepts of Condensed Matter Science Topological Insulators Vol. 6 (Elsevier, 2013).

Murakami, S. & Yokoyama, T. Quantum Spin Hall Effect and Topological Insulators Vol. 1 (Oxford Univ. Press, 2017).

Bradlyn, B. et al. Topological quantum chemistry. Nature 547, 298–305 (2017). PubMed DOI

Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018). DOI

Elcoro, L. et al. Magnetic topological quantum chemistry. Nat. Commun. 12, 5965 (2021). PubMed DOI PMC

Mazin, I. I., Koepernik, K., Johannes, M. D., González-Hernández, R. & Šmejkal, L. Prediction of unconventional magnetism in doped FeSb PubMed DOI PMC

Reichlova, H. et al. Observation of a spontaneous anomalous Hall response in the Mn PubMed DOI PMC

Šmejkal, L., Hellenes, A. B., González-Hernández, R., Sinova, J. & Jungwirth, T. Giant and tunneling magnetoresistance in unconventional collinear antiferromagnets with nonrelativistic spin–momentum coupling. Phys. Rev. X 12, 011028 (2022).

Gonzalez Betancourt, R. D. et al. Spontaneous anomalous Hall effect arising from an unconventional compensated magnetic phase in a semiconductor. Phys. Rev. Lett. 130, 036702 (2023). PubMed DOI

Šmejkal, L. et al. Chiral magnons in altermagnetic RuO PubMed DOI

Chen, X. et al. Unconventional magnons in collinear magnets dictated by spin space groups. Nature 640, 349–354 (2025). PubMed DOI PMC

Hariki, A. et al. X-ray magnetic circular dichroism in altermagnetic α-MnTe. Phys. Rev. Lett. 132, 176701 (2024). PubMed DOI

Hellenes, A. B. et al. P-wave magnets. Preprint at http://arxiv.org/abs/2309.01607 (2023).

Hellenes, A. B., Jungwirth, T., Sinova, J. & Šmejkal, L. Exchange spin–orbit coupling and unconventional p-wave magnetism. Preprint at http://arxiv.org/abs/2309.01607v1 (2023).

McClarty, P. A. & Rau, J. G. Landau theory of altermagnetism. Phys. Rev. Lett. 132, 176702 (2023). DOI

Smolyanyuk, A., Šmejkal, L. & Mazin, I. I. A tool to check whether a symmetry-compensated collinear magnetic material is antiferro- or altermagnetic. SciPost Phys. Codebases 30, 1–16 (2024).

Shinohara, K. et al. Algorithm for spin symmetry operation search. Acta Crystallogr. A 80, 94–103 (2024). DOI

Watanabe, H., Shinohara, K., Nomoto, T., Togo, A. & Arita, R. Symmetry analysis with spin crystallographic groups: disentangling effects free of spin–orbit coupling in emergent electromagnetism. Phys. Rev. B 109, 094438 (2024). DOI

Jiang, Y. et al. Enumeration of spin-space groups: toward a complete description of symmetries of magnetic orders. Phys. Rev. X 14, 031039 (2024).

Zhu, H., Li, J., Chen, X., Yu, Y. & Liu, Q. Magnetic geometry induced quantum geometry and nonlinear transports. Nat. Commun. 16, 4882 (2025). PubMed DOI PMC

Chen, X. et al. Enumeration and representation theory of spin space groups. Phys. Rev. X 14, 031038 (2024).

Schiff, H., Corticelli, A., Guerreiro, A., Romhányi, J. & McClarty, P. The crystallographic spin point groups and their representations. SciPost Phys. 18, 109 (2025).

Xiao, Z., Zhao, J., Li, Y., Shindou, R. & Song, Z.-D. Spin space groups: full classification and applications. Phys. Rev. X 14, 031037 (2024).

Litvin, D. B. Magnetic Group Tables (IUCr, 2013). http://www.iucr.org/publ/978-0-9553602-2-0 .

Berlijn, T. et al. Itinerant antiferromagnetism in RuO PubMed DOI

Zhu, Z. H. et al. Anomalous antiferromagnetism in metallic RuO PubMed DOI

Lovesey, S. W., Khalyavin, D. D. & van der Laan, G. Magnetic properties of RuO DOI

Occhialini, C. A. et al. Local electronic structure of rutile RuO DOI

Feng, Z. et al. An anomalous Hall effect in altermagnetic ruthenium dioxide. Nat. Electron. 5, 735–743 (2022). DOI

Bose, A. et al. Tilted spin current generated by the collinear antiferromagnet ruthenium dioxide. Nat. Electron. 5, 267–274 (2022). DOI

Bai, H. et al. Observation of spin splitting torque in a collinear antiferromagnet RuO PubMed DOI

Karube, S. et al. Observation of spin-splitter torque in collinear antiferromagnetic RuO PubMed DOI

Lovesey, S. W., Khalyavin, D. D. & van der Laan, G. Magnetic structure of RuO DOI

Liu, Y. et al. Inverse altermagnetic spin splitting effect-induced terahertz emission in RuO DOI

Fedchenko, O. et al. Observation of time-reversal symmetry breaking in the band structure of altermagnetic RuO DOI

Smolyanyuk, A., Mazin, I. I., Garcia-Gassull, L. & Valentí, R. Fragility of the magnetic order in the prototypical altermagnet RuO DOI

Lin, Z. et al. Observation of giant spin splitting and d-wave spin texture in room temperature altermagnet RuO

Keßler, P. et al. Absence of magnetic order in RuO

Li, Z. et al. Fully field-free spin-orbit torque switching induced by spin splitting effect in altermagnetic RuO

Wenzel, M. et al. Fermi-liquid behavior of nonaltermagnetic RuO DOI

Jeong, S. G. et al. Altermagnetic polar metallic phase in ultra-thin epitaxially-strained RuO

Hiraishi, M. et al. Nonmagnetic ground state in RuO PubMed DOI

López-Moreno, S., Romero, A. H., Mejía-López, J. & Muñoz, A. First-principles study of pressure-induced structural phase transitions in MnF PubMed DOI

Noda, Y., Ohno, K. & Nakamura, S. Momentum-dependent band spin splitting in semiconducting MnO PubMed DOI

Hayami, S., Yanagi, Y. & Kusunose, H. Momentum-dependent spin splitting by collinear antiferromagnetic ordering. J. Phys. Soc. Jpn 88, 123702 (2019). DOI

Yuan, L.-D., Wang, Z., Luo, J.-W., Rashba, E. I. & Zunger, A. Giant momentum-dependent spin splitting in centrosymmetric low-Z antiferromagnets. Phys. Rev. B 102, 014422 (2020). DOI

Bhowal, S. & Spaldin, N. A. Ferroically ordered magnetic octupoles in d-wave altermagnets. Phys. Rev. X 14, 011019 (2024).

Jaeschke-Ubiergo, R. et al. Atomic altermagnetism. Preprint at https://arxiv.org/pdf/2503.10797 (2025).

Lovesey, S. W., Khalyavin, D. D. & van der Laan, G. Templates for magnetic symmetry and altermagnetism in hexagonal MnTe. Phys. Rev. B 108, 174437 (2023). DOI

Mazin, I. I. Altermagnetism in MnTe: origin, predicted manifestations, and routes to detwinning. Phys. Rev. B 107, L100418 (2023). DOI

Krempaský, J. et al. Altermagnetic lifting of Kramers spin degeneracy. Nature 626, 517–522 (2024). This paper and refs. 99–101 reported experimental spectroscopic observations of a g-wave altermagnetic band structure of MnTe. PubMed DOI PMC

Lee, S. S. et al. Broken Kramers degeneracy in altermagnetic MnTe. Phys. Rev. Lett. 132, 036702 (2024). PubMed DOI

Osumi, T. et al. Observation of a giant band splitting in altermagnetic MnTe. Phys. Rev. B 109, 115102 (2024). DOI

Hajlaoui, M. et al. Temperature dependence of relativistic valence band splitting induced by an altermagnetic phase transition. Adv. Mater. 36, 2314076 (2024). DOI

Aoyama, T. & Ohgushi, K. Piezomagnetic properties in altermagnetic MnTe. Phys. Rev. Mater. 8, L041402 (2024). DOI

Kluczyk, K. P. et al. Coexistence of anomalous Hall effect and weak magnetization in a nominally collinear antiferromagnet MnTe. Phys. Rev. B 110, 155201 (2024). DOI

Reimers, S. et al. Direct observation of altermagnetic band splitting in CrSb thin films. Nat. Commun. 15, 2116 (2024). PubMed DOI PMC

Yang, G. et al. Three-dimensional mapping of the altermagnetic spin splitting in CrSb. Nat. Commun. 16, 1442 (2025). PubMed DOI PMC

Ding, J. et al. Large band splitting in g-wave altermagnet CrSb. Phys. Rev. Lett. 133, 206401 (2024). PubMed DOI

Li, C. et al. Topological Weyl altermagnetism in CrSb. Commun. Phys. 8, 311 (2025).

Lu, W. et al. Signature of topological surface bands in altermagnetic Weyl semimetal CrSb. Nano Lett. 25, 7343–7350 (2025). PubMed DOI PMC

Zeng, M. et al. Observation of spin splitting in room-temperature metallic antiferromagnet CrSb. Adv. Sci. 11, 2406529 (2024). DOI

Dale, N. et al. Non-relativistic spin splitting above and below the Fermi level in a g-wave altermagnet. Preprint at http://arxiv.org/abs/2411.18761 (2024).

Liu, Z., Ozeki, M., Asai, S., Itoh, S. & Masuda, T. Chiral-split magnon in altermagnetic MnTe. Phys. Rev. Lett. 133, 156702 (2024). PubMed DOI

Jiang, B. et al. A metallic room-temperature d-wave altermagnet. Nat. Phys. 21, 754–759 (2025). This paper and ref. 113 reported experimental spectroscopic observations of a d-wave altermagnetic band structure. DOI

Zhang, F. et al. Crystal-symmetry-paired spin–valley locking in a layered room-temperature metallic altermagnet candidate. Nat. Phys. 21, 760–767 (2025). DOI

Antonenko, D. S., Fernandes, R. M. & Venderbos, J. W. F. Mirror Chern bands and Weyl nodal loops in altermagnets. Phys. Rev. Lett. 134, 096703 (2025). This paper reported a theoretical study of topological phenomena in 2D (Lieb lattice) and 3D minimal models of altermagnetism. PubMed DOI

Kaushal, N. & Franz, M. Altermagnetism in modified Lieb lattice Hubbard model. Phys. Rev. Lett. 135, 156502 (2025).

Wei, C. C. et al. La DOI

Maharaj, D. D. et al. Octupolar versus Néel order in cubic 5d DOI

Néel, L. Magnetism and local molecular field. Science 174, 985–992 (1971). PubMed DOI

Chakraborty, A., González Hernández, R., Šmejkal, L. & Sinova, J. Strain-induced phase transition from antiferromagnet to altermagnet. Phys. Rev. B 109, 144421 (2024). DOI

Liu, Y., Yu, J. & Liu, C.-C. Twisted magnetic van der Waals bilayers: an ideal platform for altermagnetism. Phys. Rev. Lett. 133, 206702 (2024). PubMed DOI

Leeb, V., Mook, A., Šmejkal, L. & Knolle, J. Spontaneous formation of altermagnetism from orbital ordering. Phys. Rev. Lett. 132, 236701 (2024). PubMed DOI

Fernandes, R. M., de Carvalho, V. S., Birol, T. & Pereira, R. G. Topological transition from nodal to nodeless Zeeman splitting in altermagnets. Phys. Rev. B 109, 024404 (2024). DOI

Das, S., Suri, D. & Soori, A. Transport across junctions of altermagnets with normal metals and ferromagnets. J. Phys. Condensed Matter 35, 435302 (2023). DOI

Maier, T. A. & Okamoto, S. Weak-coupling theory of neutron scattering as a probe of altermagnetism. Phys. Rev. B 108, L100402 (2023). DOI

Sato, T., Haddad, S., Fulga, I. C., Assaad, F. F. & van den Brink, J. Altermagnetic anomalous Hall effect emerging from electronic correlations. Phys. Rev. Lett. 133, 086503 (2024). PubMed DOI

Roig, M., Kreisel, A., Yu, Y., Andersen, B. M. & Agterberg, D. F. Minimal models for altermagnetism. Phys. Rev. B 110, 144412 (2024). DOI

Bose, A., Vadnais, S. & Paramekanti, A. Altermagnetism and superconductivity in a multiorbital t–J model. Phys. Rev. B 110, 205120 (2024). DOI

Ferrari, F. & Valentí, R. Altermagnetism on the Shastry–Sutherland lattice. Phys. Rev. B 110, 205140 (2024). DOI

Rooj, S., Saxena, S. & Ganguli, N. Altermagnetism in the orthorhombic Pnm structure through group theory and DFT calculations. Phys. Rev. B 111, 014434 (2025). DOI

Töpfer, J. & Goodenough, J. LaMnO DOI

Chen, H., Niu, Q. & Macdonald, A. H. Anomalous Hall effect arising from noncollinear antiferromagnetism. Phys. Rev. Lett. 112, 017205 (2014). This paper predicted the anomalous Hall effect in a non-collinear compensated magnet. PubMed DOI

Zhou, J. et al. Predicted quantum topological Hall effect and noncoplanar antiferromagnetism in K PubMed DOI

Feng, W. et al. Topological magneto-optical effects and their quantization in noncoplanar antiferromagnets. Nat. Commun. 11, 118 (2020). PubMed DOI PMC

Ahn, K.-H., Hariki, A., Lee, K.-W. & Kuneš, J. Antiferromagnetism in RuO DOI

Naka, M. et al. Spin current generation in organic antiferromagnets. Nat. Commun. 10, 4305 (2019). PubMed DOI PMC

Guo, Y. et al. Spin-split collinear antiferromagnets: a large-scale ab-initio study. Mater. Today Phys. 32, 100991 (2023). DOI

Ma, H.-Y. et al. Multifunctional antiferromagnetic materials with giant piezomagnetism and noncollinear spin current. Nat. Commun. 12, 2846 (2021). PubMed DOI PMC

Egorov, S. A. & Evarestov, R. A. Colossal spin splitting in the monolayer of the collinear antiferromagnet MnF PubMed DOI

Cui, Q., Zhu, Y., Yao, X., Cui, P. & Yang, H. Giant spin-Hall and tunneling magnetoresistance effects based on a two-dimensional nonrelativistic antiferromagnetic metal. Phys. Rev. B 108, 024410 (2023). DOI

Chen, X., Wang, D., Li, L. & Sanyal, B. Giant spin-splitting and tunable spin-momentum locked transport in room temperature collinear antiferromagnetic semimetallic CrO monolayer. Appl. Phys. Lett. 123, 022402 (2023).

Sødequist, J. & Olsen, T. Two-dimensional altermagnets from high throughput computational screening: symmetry requirements, chiral magnons, and spin–orbit effects. Appl. Phys. Lett. 124, 182409 (2024). DOI

Zhu, Y.-P. et al. Observation of plaid-like spin splitting in a noncoplanar antiferromagnet. Nature 626, 523–528 (2024). PubMed DOI

Zhu, Y. et al. Multipiezo effect in altermagnetic V PubMed DOI

Wigner, E. Ueber die Operation der Zeitumkehr in der Quantenmechanik. Nachr. Ges. Wiss. Gott. Math. Phys. Kl. 1932, 546–559 (1932).

Tang, P., Zhou, Q., Xu, G. & Zhang, S.-C. Dirac fermions in an antiferromagnetic semimetal. Nat. Phys. 12, 1100–1104 (2016). DOI

Šmejkal, L., Železný, J., Sinova, J. & Jungwirth, T. Electric control of Dirac quasiparticles by spin–orbit torque in an antiferromagnet. Phys. Rev. Lett. 118, 106402 (2017). PubMed DOI

Šmejkal, L., Mokrousov, Y., Yan, B. & MacDonald, A. H. Topological antiferromagnetic spintronics. Nat. Phys. 14, 242–251 (2018). DOI

Kübler, J. & Felser, C. Non-collinear antiferromagnets and the anomalous Hall effect. Europhys. Lett. 108, 67001 (2014). DOI

Nakatsuji, S., Kiyohara, N. & Higo, T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 527, 212–215 (2015). This paper reported the experimental observation of the anomalous Hall effect in a non-collinear compensated magnet. PubMed DOI

Kiyohara, N., Tomita, T. & Nakatsuji, S. Giant anomalous Hall effect in the chiral antiferromagnet Mn DOI

Nayak, A. K. et al. Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn PubMed DOI PMC

Takagi, H. et al. Spontaneous topological Hall effect induced by non-coplanar antiferromagnetic order in intercalated van der Waals materials. Nat. Phys. 19, 961–968 (2023). DOI

Ikhlas, M. et al. Large anomalous Nernst effect at room temperature in a chiral antiferromagnet. Nat. Phys. 13, 1085–1090 (2017). DOI

Li, X. et al. Anomalous Nernst and Righi-Leduc effects in Mn PubMed DOI

Higo, T. et al. Large magneto-optical Kerr effect and imaging of magnetic octupole domains in an antiferromagnetic metal. Nat. Photon. 12, 73–78 (2018). DOI

Matsuda, T., Kanda, N., Higo, T. & Matsunaga, R. Room-temperature terahertz anomalous Hall effect in Weyl antiferromagnet Mn PubMed DOI PMC

Kimata, M. et al. X-ray study of ferroic octupole order producing anomalous Hall effect. Nat. Commun. 12, 5582 (2021). PubMed DOI PMC

Sakamoto, S. et al. Observation of spontaneous X-ray magnetic circular dichroism in a chiral antiferromagnet. Phys. Rev. B 104, 134431 (2021). DOI

Železný, J., Zhang, Y., Felser, C. & Yan, B. Spin-polarized current in noncollinear antiferromagnets. Phys. Rev. Lett. 119, 187204 (2017). PubMed DOI

Zhang, Y., Železný, J., Sun, Y., van den Brink, J. & Yan, B. Spin Hall effect emerging from a noncollinear magnetic lattice without spin–orbit coupling. New J. Phys. 20, 073028 (2018). DOI

Kimata, M. et al. Magnetic and magnetic inverse spin Hall effects in a non-collinear antiferromagnet. Nature 565, 627–630 (2019). PubMed DOI

Hu, S. et al. Efficient perpendicular magnetization switching by a magnetic spin Hall effect in a noncollinear antiferromagnet. Nat. Commun. 13, 4447 (2022). PubMed DOI PMC

Tsai, H. et al. Electrical manipulation of a topological antiferromagnetic state. Nature 580, 608–613 (2020). PubMed DOI

Takeuchi, Y. et al. Chiral-spin rotation of non-collinear antiferromagnet by spin–orbit torque. Nat. Mater. 20, 1364–1370 (2021). PubMed DOI

Higo, T. et al. Perpendicular full switching of chiral antiferromagnetic order by current. Nature 607, 474–479 (2022). PubMed DOI

Pal, B. et al. Setting of the magnetic structure of chiral kagome antiferromagnets by a seeded spin–orbit torque. Sci. Adv. 8, eabo5930 (2022). PubMed DOI PMC

Chen, X. et al. Octupole-driven magnetoresistance in an antiferromagnetic tunnel junction. Nature 613, 490–495 (2023). PubMed DOI PMC

Qin, P. et al. Room-temperature magnetoresistance in an all-antiferromagnetic tunnel junction. Nature 613, 485–489 (2023). PubMed DOI

Nakatsuji, S. & Arita, R. Topological magnets: functions based on Berry phase and multipoles. Annu. Rev. Condensed Matter Phys. 13, 119–142 (2022).

Rimmler, B. H., Pal, B. & Parkin, S. S. P. Non-collinear antiferromagnetic spintronics. Nat. Rev. Mater. 10, 109–127 (2024).

Han, J., Yoon, J.-Y., Ohno, H. & Fukami, S. Unconventional responses in non-collinear antiferromagnets. Newton 1, 100012 (2025). DOI

Brekke, B., Sukhachov, P., Giil, H. G., Brataas, A. & Linder, J. Minimal models and transport properties of unconventional p-wave magnets. Phys. Rev. Lett. 133, 236703 (2024). PubMed DOI

Ezawa, M. Topological insulators and superconductors based on p-wave magnets: electrical control and detection of a domain wall. Phys. Rev. B 110, 165429 (2024). DOI

Sivianes, J., dos Santos, F. J. & Ibañez-Azpiroz, J. Optical signatures of spin symmetries in unconventional magnets. Phys. Rev. Lett. 134, 196907 (2025). PubMed DOI

Chakraborty, A. et al. Highly efficient non-relativistic Edelstein effect in p-wave magnets. Nat. Commun. 16, 7270 (2023). DOI

Yu, Y. et al. Odd-parity magnetism driven by antiferromagnetic exchange. Phys. Rev. Lett. 135, 046701 (2025).

Wang, M. et al. Emergent zero-field anomalous Hall effect in a reconstructed rutile antiferromagnetic metal. Nat. Commun. 14, 8240 (2023). PubMed DOI PMC

Han, L. et al. Electrical 180° switching of Néel vector in spin-splitting antiferromagnet. Sci. Adv. 10, eadn0479 (2024). PubMed DOI PMC

Takagi, R. et al. Spontaneous Hall effect induced by collinear antiferromagnetic order at room temperature. Nat. Mater. 24, 63–68 (2025). PubMed DOI

Ray, M. K. et al. Zero-field Hall effect emerging from a non-Fermi liquid in a collinear antiferromagnet V PubMed DOI PMC

Fakhredine, A., Sattigeri, R. M., Cuono, G. & Autieri, C. Interplay between altermagnetism and nonsymmorphic symmetries generating large anomalous Hall conductivity by semi-Dirac points induced anticrossings. Phys. Rev. B 108, 115138 (2023). DOI

Fang, Y., Cano, J. & Ghorashi, S. A. A. Quantum geometry induced nonlinear transport in altermagnets. Phys. Rev. Lett. 133, 106701 (2024). PubMed DOI

Li, Y.-X., Liu, Y. & Liu, C.-C. Creation and manipulation of higher-order topological states by altermagnets. Phys. Rev. B 109, L201109 (2024). DOI

Zhou, X. et al. Crystal thermal transport in altermagnetic RuO DOI

Zhan, J., Li, J., Shi, W., Chen, X. Q. & Sun, Y. Coexistence of Weyl semimetal and Weyl nodal loop semimetal phases in a collinear antiferromagnet. Phys. Rev. B 107, 224402 (2023). DOI

Nag, J. et al. GdAlSi: an antiferromagnetic topological Weyl semimetal with nonrelativistic spin splitting. Phys. Rev. B 110, 224436 (2024). DOI

Parshukov, K., Wiedmann, R. & Schnyder, A. P. Topological responses from gapped Weyl points in 2D altermagnets. Phys. Rev. B 111, 224406 (2025).

Rao, P., Mook, A. & Knolle, J. Tunable band topology and optical conductivity in altermagnets. Phys. Rev. B 110, 024425 (2024). DOI

Tao, L. L. & Tsymbal, E. Y. Persistent spin texture enforced by symmetry. Nat. Commun. 9, 2763 (2018). PubMed DOI PMC

Ji, J., Lou, F., Yu, R., Feng, J. S. & Xiang, H. J. Symmetry-protected full-space persistent spin texture in two-dimensional materials. Phys. Rev. B 105, L041404 (2022). DOI

Bernevig, B. A., Orenstein, J. & Zhang, S. C. Exact SU(2) symmetry and persistent spin helix in a spin–orbit coupled system. Phys. Rev. Lett. 97, 236601 (2006). PubMed DOI

Koralek, J. D. et al. Emergence of the persistent spin helix in semiconductor quantum wells. Nature 458, 610–613 (2009). PubMed DOI

Kuroda, K. et al. Evidence for magnetic Weyl fermions in a correlated metal. Nat. Mater. 16, 1090–1095 (2017). PubMed DOI

Liu, Z. Q. et al. Electrical switching of the topological anomalous Hall effect in a non-collinear antiferromagnet above room temperature. Nat. Electron. 1, 172–177 (2018). DOI

Xu, L. et al. Finite-temperature violation of the anomalous transverse Wiedemann–Franz law. Sci. Adv. 6, eaaz3522 (2020). PubMed DOI PMC

Chen, T. et al. Anomalous transport due to Weyl fermions in the chiral antiferromagnets Mn PubMed DOI PMC

Ghosh, S. et al. Raman spectroscopic evidence for linearly dispersed nodes and magnetic ordering in the topological semimetal V

Sun, K., Yao, H., Fradkin, E. & Kivelson, S. A. Topological insulators and nematic phases from spontaneous symmetry breaking in 2D Fermi systems with a quadratic band crossing. Phys. Rev. Lett. 103, 046811 (2009). PubMed DOI

Steward, C. R. W., Fernandes, R. M. & Schmalian, J. Dynamic paramagnon-polarons in altermagnets. Phys. Rev. B 108, 144418 (2023). DOI

Martin, I. & Batista, C. D. Itinerant electron-driven chiral magnetic ordering and spontaneous quantum Hall effect in triangular lattice models. Phys. Rev. Lett. 101, 156402 (2008). PubMed DOI

MAGNDATA: A Collection of Magnetic Structures with Portable cif-type Files. https://www.cryst.ehu.es/magndata/ .

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...