Study on the Binding of Five Plant-Derived Secondary Metabolites to G‑Quadruplexes
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
41585727
PubMed Central
PMC12824740
DOI
10.1021/acsomega.5c09032
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Chemical targeting of noncanonical secondary structures of DNA and RNA has emerged as a promising approach for therapeutic development. The most promising targets seem to be four-stranded structures in the G-rich regions of the genome, known as G-quadruplexes (G4s), which are associated with important regulatory regions including promoters. In this study, we tested and modeled the binding of five plant-derived secondary metabolites, known for their antiproliferative activity in vitro, to two G4s found in the human genome: the first at the c-Myc proto-oncogene and the second at the human telomere repeat region. Among the tested compounds, brucine exhibited the strongest interaction with both G4 sequences, while ellagic acid demonstrated binding efficacy comparable to that of brucine in the c-Myc sequence. Through molecular dynamics simulations and the Markov state model, we explored the binding modes of these ligands, elucidated the G4 stability in the bound state, and investigated the fluorescence quenching effect of thioflavin T (ThT) upon its displacement. The biological effects of these natural compounds were investigated in human cell lines, and the interaction with G4s was verified experimentally using a fluorescence displacement assay and CD spectroscopy. This study demonstrates the interaction of these natural compounds with the G4 structures and their implications for therapeutic targeting.
BioTechmed Graz Mozartgasse 12 2 Graz 8010 Austria
Brno University of Technology Faculty of Chemistry Purkynova 118 Brno 612 00 Czech Republic
Zobrazit více v PubMed
Liu Q., Wang Q., Lv C., Liu Z., Gao H., Chen Y., Zhao G.. Brucine Inhibits Proliferation of Glioblastoma Cells by Targeting the G-Quadruplexes in the c-Myb Promoter. J. Cancer. 2021;12(7):1990–1999. doi: 10.7150/jca.53689. PubMed DOI PMC
Kang Q., Zheng K., Jiang G.-M., Li Y.-K., Liang Y.-B., Geng Q., Qian C.-H., Wang Q.-B., He Z.-Y., Huang S.-Q., Yang C., Li J., Li Y.-H., Ke Y.. Brucine Suppresses Proliferation and Promotes Apoptosis of Human Cholangiacarcinoma Cells via the Inhibition of COX2 Expression. J. Cancer. 2023;14(14):2700–2706. doi: 10.7150/jca.87514. PubMed DOI PMC
Ashrafizadeh M., Zarrabi A., Mirzaei S., Hashemi F., Samarghandian S., Zabolian A., Hushmandi K., Ang H. L., Sethi G., Kumar A. P., Ahn K. S., Nabavi N., Khan H., Makvandi P., Varma R. S.. Gallic Acid for Cancer Therapy: Molecular Mechanisms and Boosting Efficacy by Nanoscopical Delivery. Food Chem. Toxicol. 2021;157:112576. doi: 10.1016/j.fct.2021.112576. PubMed DOI
Lu G., Wang X., Cheng M., Wang S., Ma K.. The Multifaceted Mechanisms of Ellagic Acid in the Treatment of Tumors: State-of-the-Art. Biomed. Pharmacother. 2023;165:115132. doi: 10.1016/j.biopha.2023.115132. PubMed DOI
Shay J., Elbaz H. A., Lee I., Zielske S. P., Malek M. H., Hüttemann M.. Molecular Mechanisms and Therapeutic Effects of (−)-Epicatechin and Other Polyphenols in Cancer, Inflammation, Diabetes, and Neurodegeneration. Oxid. Med. Cell. Longevity. 2015;2015:181260. doi: 10.1155/2015/181260. PubMed DOI PMC
Cai Z.-Y., Li X.-M., Liang J.-P., Xiang L.-P., Wang K.-R., Shi Y.-L., Yang R., Shi M., Ye J.-H., Lu J.-L., Zheng X.-Q., Liang Y.-R.. Bioavailability of Tea Catechins and Its Improvement. Molecules. 2018;23(9):2346. doi: 10.3390/molecules23092346. PubMed DOI PMC
Bartosikova L., Necas J.. Epigallocatechin Gallate: A Review. Vet. Med. 2018;63(10):443–467. doi: 10.17221/31/2018-VETMED. DOI
Dong S.-H., Liu J., Ge Y.-Z., Dong L., Xu C.-H., Ding J., Yue J.-M.. Chemical Constituents from Brucea Javanica. Phytochemistry. 2013;85:175–184. doi: 10.1016/j.phytochem.2012.08.018. PubMed DOI
Shu G., Mi X., Cai J., Zhang X., Yin W., Yang X., Li Y., Chen L., Deng X.. Brucine, an Alkaloid from Seeds of Strychnos Nux-Vomica Linn., Represses Hepatocellular Carcinoma Cell Migration and Metastasis: The Role of Hypoxia Inducible Factor 1 Pathway. Toxicol. Lett. 2013;222(2):91–101. doi: 10.1016/j.toxlet.2013.07.024. PubMed DOI
Lu L., Huang R., Wu Y., Jin J.-M., Chen H.-Z., Zhang L.-J., Luan X.. Brucine: A Review of Phytochemistry, Pharmacology, and Toxicology. Front. Pharmacol. 2020;11:377. doi: 10.3389/fphar.2020.00377. PubMed DOI PMC
Kongpichitchoke T., Chiu M.-T., Huang T.-C., Hsu J.-L.. Gallic Acid Content in Taiwanese Teas at Different Degrees of Fermentation and Its Antioxidant Activity by Inhibiting PKCδ Activation: In Vitro and in Silico Studies. Molecules. 2016;21(10):1346. doi: 10.3390/molecules21101346. PubMed DOI PMC
Kahkeshani N., Farzaei F., Fotouhi M., Alavi S. S., Bahramsoltani R., Naseri R., Momtaz S., Abbasabadi Z., Rahimi R., Farzaei M. H.. et al. Pharmacological Effects of Gallic Acid in Health and Disease: A Mechanistic Review. Iran. J. Basic Med. Sci. 2019;22(3):225–237. doi: 10.22038/ijbms.2019.32806.7897. PubMed DOI PMC
Choińska R., Dąbrowska K., Świsłocka R., Lewandowski W., Świergiel A. H.. Antimicrobial Properties of Mandelic Acid, Gallic Acid and Their Derivatives. Mini-Rev. Med. Chem. 2021;21(17):2544–2550. doi: 10.2174/1389557521666210105123834. PubMed DOI
Prakash M., Basavaraj B. V., Chidambara Murthy K. N.. Biological Functions of Epicatechin: Plant Cell to Human Cell Health. J. Funct. Foods. 2019;52:14–24. doi: 10.1016/j.jff.2018.10.021. DOI
Cuevas E., Limón D., Pérez-Severiano F., Díaz A., Ortega L., Zenteno E., Guevara J.. Antioxidant Effects of Epicatechin on the Hippocampal Toxicity Caused by Amyloid-Beta 25–35 in Rats. Eur. J. Pharmacol. 2009;616(1–3):122–127. doi: 10.1016/j.ejphar.2009.06.013. PubMed DOI
Song H., Wu H., Dong J., Huang S., Ye J., Liu R.. Ellagic Acid Alleviates Rheumatoid Arthritis in Rats through Inhibiting MTA1/HDAC1-Mediated Nur77 Deacetylation. Mediators Inflammation. 2021;2021:6359652. doi: 10.1155/2021/6359652. PubMed DOI PMC
Hou Z., Sang S., You H., Lee M.-J., Hong J., Chin K.-V., Yang C. S.. Mechanism of Action of (−)-Epigallocatechin-3-Gallate: Auto-Oxidation–Dependent Inactivation of Epidermal Growth Factor Receptor and Direct Effects on Growth Inhibition in Human Esophageal Cancer KYSE 150 Cells. Cancer Res. 2005;65(17):8049–8056. doi: 10.1158/0008-5472.CAN-05-0480. PubMed DOI
Cascella M., Bimonte S., Muzio M. R., Schiavone V., Cuomo A.. The Efficacy of Epigallocatechin-3-Gallate (Green Tea) in the Treatment of Alzheimer’s Disease: An Overview of Pre-Clinical Studies and Translational Perspectives in Clinical Practice. Infect. Agents Cancer. 2017;12(1):36. doi: 10.1186/s13027-017-0145-6. PubMed DOI PMC
Wright W. E., Tesmer V. M., Huffman K. E., Levene S. D., Shay J. W.. Normal Human Chromosomes Have Long G-Rich Telomeric Overhangs at One End. Genes Dev. 1997;11(21):2801–2809. doi: 10.1101/gad.11.21.2801. PubMed DOI PMC
Sheng R., Gu Z.-L., Xie M.-L.. Epigallocatechin Gallate, the Major Component of Polyphenols in Green Tea, Inhibits Telomere Attrition Mediated Cardiomyocyte Apoptosis in Cardiac Hypertrophy. Int. J. Cardiol. 2013;162(3):199–209. doi: 10.1016/j.ijcard.2011.07.083. PubMed DOI
Prasanth M., Sivamaruthi B., Chaiyasut C., Tencomnao T.. A Review of the Role of Green Tea (Camellia Sinensis) in Antiphotoaging, Stress Resistance, Neuroprotection, and Autophagy. Nutrients. 2019;11(2):474. doi: 10.3390/nu11020474. PubMed DOI PMC
Burge S., Parkinson G. N., Hazel P., Todd A. K., Neidle S. Q. D.. Sequence, Topology and Structure. Nucleic Acids Res. 2006;34(19):5402–5415. doi: 10.1093/nar/gkl655. PubMed DOI PMC
Sen D., Gilbert W.. A Sodium-Potassium Switch in the Formation of Four-Stranded G4-DNA. Nature. 1990;344(6265):410–414. doi: 10.1038/344410a0. PubMed DOI
Bhattacharyya D., Mirihana Arachchilage G., Basu S.. Metal Cations in G-Quadruplex Folding and Stability. Front. Chem. 2016;4:4. doi: 10.3389/fchem.2016.00038. PubMed DOI PMC
Parkinson G. N., Lee M. P. H., Neidle S.. Crystal Structure of Parallel Quadruplexes from Human Telomeric DNA. Nature. 2002;417(6891):876–880. doi: 10.1038/nature755. PubMed DOI
Hazel P.. Predictive Modelling of Topology and Loop Variations in Dimeric DNA Quadruplex Structures. Nucleic Acids Res. 2006;34(7):2117–2127. doi: 10.1093/nar/gkl182. PubMed DOI PMC
Chambers V. S., Marsico G., Boutell J. M., Di Antonio M., Smith G. P., Balasubramanian S.. High-Throughput Sequencing of DNA G-Quadruplex Structures in the Human Genome. Nat. Biotechnol. 2015;33(8):877–881. doi: 10.1038/nbt.3295. PubMed DOI
Nishio M., Tsukakoshi K., Ikebukuro K.. G-Quadruplex: Flexible Conformational Changes by Cations, pH, Crowding and Its Applications to Biosensing. Biosens. Bioelectron. 2021;178:113030. doi: 10.1016/j.bios.2021.113030. PubMed DOI
Carvalho J., Mergny J.-L., Salgado G. F., Queiroz J. A., Cruz C. G.-Q.. Friend or Foe: The Role of the G-Quartet in Anticancer Strategies. Trends Mol. Med. 2020;26(9):848–861. doi: 10.1016/j.molmed.2020.05.002. PubMed DOI
Monsen R. C., DeLeeuw L. W., Dean W. L., Gray R. D., Chakravarthy S., Hopkins J. B., Chaires J. B., Trent J. O.. Long Promoter Sequences Form Higher-Order G-Quadruplexes: An Integrative Structural Biology Study of c-Myc, k-Ras and c-Kit Promoter Sequences. Nucleic Acids Res. 2022;50(7):4127–4147. doi: 10.1093/nar/gkac182. PubMed DOI PMC
Esain-Garcia I., Kirchner A., Melidis L., Tavares R. D. C. A., Dhir S., Simeone A., Yu Z., Madden S. K., Hermann R., Tannahill D., Balasubramanian S.. G-Quadruplex DNA Structure Is a Positive Regulator of MYC Transcription. Proc. Natl. Acad. Sci. U. S. A. 2024;121(7):e2320240121. doi: 10.1073/pnas.2320240121. PubMed DOI PMC
Bugaut A., Balasubramanian S.. 5′-UTR RNA G-Quadruplexes: Translation Regulation and Targeting. Nucleic Acids Res. 2012;40(11):4727–4741. doi: 10.1093/nar/gks068. PubMed DOI PMC
Ferret L., Alvarez-Valadez K., Rivière J., Muller A., Bohálová N., Yu L., Guittat L., Brázda V., Kroemer G., Mergny J.-L., Djavaheri-Mergny M.. G-Quadruplex Ligands as Potent Regulators of Lysosomes. Autophagy. 2023;19(7):1901–1915. doi: 10.1080/15548627.2023.2170071. PubMed DOI PMC
Brázda V., Mergny J.-L.. Quadruplexes and Aging: G4-Binding Proteins Regulate the Presence of miRNA in Small Extracellular Vesicles (sEVs) Biochimie. 2023;214:69–72. doi: 10.1016/j.biochi.2023.01.014. PubMed DOI
Choi E. W., Nayak L. V., Bates P. J.. Cancer-Selective Antiproliferative Activity Is a General Property of Some G-Rich Oligodeoxynucleotides. Nucleic Acids Res. 2010;38(5):1623–1635. doi: 10.1093/nar/gkp1088. PubMed DOI PMC
Kelleher C., Kurth I., Lingner J.. Human Protection of Telomeres 1 (POT1) Is a Negative Regulator of Telomerase Activity In Vitro. Mol. Cell. Biol. 2005;25(2):808–818. doi: 10.1128/MCB.25.2.808-818.2005. PubMed DOI PMC
Hudson J. S., Ding L., Le V., Lewis E., Graves D.. Recognition and Binding of Human Telomeric G-Quadruplex DNA by Unfolding Protein 1. Biochemistry. 2014;53(20):3347–3356. doi: 10.1021/bi500351u. PubMed DOI PMC
Sanchez-Martin V., Plaza-Calonge M. D. C., Soriano-Lerma A., Ortiz-Gonzalez M., Linde-Rodriguez A., Perez-Carrasco V., Ramirez-Macias I., Cuadros M., Gutierrez-Fernandez J., Murciano-Calles J., Rodríguez-Manzaneque J. C., Soriano M., Garcia-Salcedo J. A.. Gallic Acid: A Natural Phenolic Compound Exerting Antitumoral Activities in Colorectal Cancer via Interaction with G-Quadruplexes. Cancers. 2022;14(11):2648. doi: 10.3390/cancers14112648. PubMed DOI PMC
Pattanayak R., Basak P., Sen S., Bhattacharyya M.. Interaction of KRAS G-Quadruplex with Natural Polyphenols: A Spectroscopic Analysis with Molecular Modeling. Int. J. Biol. Macromol. 2016;89:228–237. doi: 10.1016/j.ijbiomac.2016.04.074. PubMed DOI
Stsiapura V. I., Maskevich A. A., Kuzmitsky V. A., Turoverov K. K., Kuznetsova I. M.. Computational Study of Thioflavin T Torsional Relaxation in the Excited State. J. Phys. Chem. A. 2007;111(22):4829–4835. doi: 10.1021/jp070590o. PubMed DOI
Kuzuhara T., Sei Y., Yamaguchi K., Suganuma M., Fujiki H.. DNA and RNA as New Binding Targets of Green Tea Catechins. J. Biol. Chem. 2006;281(25):17446–17456. doi: 10.1074/jbc.M601196200. PubMed DOI
Awadasseid A., Ma X., Wu Y., Zhang W.. G-Quadruplex Stabilization via Small-Molecules as a Potential Anti-Cancer Strategy. Biomed. Pharmacother. 2021;139:111550. doi: 10.1016/j.biopha.2021.111550. PubMed DOI
Bernal A., Tusell L.. Telomeres: Implications for Cancer Development. Int. J. Mol. Sci. 2018;19(1):294. doi: 10.3390/ijms19010294. PubMed DOI PMC
Choudhury S. D., Kumar P., Choudhury D.. Bioactive Nutraceuticals as G4 Stabilizers: Potential Cancer Prevention and Therapya Critical Review. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2024;397(6):3585–3616. doi: 10.1007/s00210-023-02857-z. PubMed DOI
PubChem; 2025, https://pubchem.ncbi.nlm.nih.gov/. (accessed 11–February–2025).
Mohanty J., Barooah N., Dhamodharan V., Harikrishna S., Pradeepkumar P. I., Bhasikuttan A. C.. Thioflavin T as an Efficient Inducer and Selective Fluorescent Sensor for the Human Telomeric G-Quadruplex DNA. J. Am. Chem. Soc. 2013;135(1):367–376. doi: 10.1021/ja309588h. PubMed DOI
Luo D., Mu Y.. All-Atomic Simulations on Human Telomeric G-Quadruplex DNA Binding with Thioflavin T. J. Phys. Chem. B. 2015;119(15):4955–4967. doi: 10.1021/acs.jpcb.5b01107. PubMed DOI
Dickerhoff J., Brundridge N., McLuckey S. A., Yang D.. Berberine Molecular Recognition of the Parallel MYC G-Quadruplex in Solution. J. Med. Chem. 2021;64(21):16205–16212. doi: 10.1021/acs.jmedchem.1c01508. PubMed DOI PMC
Amdursky N., Erez Y., Huppert D.. Molecular Rotors: What Lies Behind the High Sensitivity of the Thioflavin-T Fluorescent Marker. Acc. Chem. Res. 2012;45(9):1548–1557. doi: 10.1021/ar300053p. PubMed DOI
Voropai N. I.. System Energy Studies at the Energy Systems Institute. Int. J. Global Energy Issues. 2003;20(4):317. doi: 10.1504/IJGEI.2003.004405. DOI
Sulatskaya A. I., Lavysh A. V., Maskevich A. A., Kuznetsova I. M., Turoverov K. K.. Thioflavin T Fluoresces as Excimer in Highly Concentrated Aqueous Solutions and as Monomer Being Incorporated in Amyloid Fibrils. Sci. Rep. 2017;7(1):2146. doi: 10.1038/s41598-017-02237-7. PubMed DOI PMC
Klett J., Núñez-Salgado A., Dos Santos H. G., Cortés-Cabrera Á., Perona A., Gil-Redondo R., Abia D., Gago F., Morreale A.. MM-ISMSA: An Ultrafast and Accurate Scoring Function for Protein–Protein Docking. J. Chem. Theory Comput. 2012;8(9):3395–3408. doi: 10.1021/ct300497z. PubMed DOI
Scherer M. K., Trendelkamp-Schroer B., Paul F., Pérez-Hernández G., Hoffmann M., Plattner N., Wehmeyer C., Prinz J.-H., Noé F.. PyEMMA 2: A Software Package for Estimation, Validation, and Analysis of Markov Models. J. Chem. Theory Comput. 2015;11(11):5525–5542. doi: 10.1021/acs.jctc.5b00743. PubMed DOI
Shu H., Zhang R., Xiao K., Yang J., Sun X.. G-Quadruplex-Binding Proteins: Promising Targets for Drug Design. Biomolecules. 2022;12(5):648. doi: 10.3390/biom12050648. PubMed DOI PMC
Teng F.-Y., Jiang Z.-Z., Guo M., Tan X.-Z., Chen F., Xi X.-G., Xu Y.. G-Quadruplex DNA: A Novel Target for Drug Design. Cell. Mol. Life Sci. 2021;78(19–20):6557–6583. doi: 10.1007/s00018-021-03921-8. PubMed DOI PMC
Figueiredo J., Mergny J.-L., Cruz C.. G-Quadruplex Ligands in Cancer Therapy: Progress, Challenges, and Clinical Perspectives. Life Sci. 2024;340:122481. doi: 10.1016/j.lfs.2024.122481. PubMed DOI
Alessandrini I., Recagni M., Zaffaroni N., Folini M.. On the Road to Fight Cancer: The Potential of G-Quadruplex Ligands as Novel Therapeutic Agents. Int. J. Mol. Sci. 2021;22(11):5947. doi: 10.3390/ijms22115947. PubMed DOI PMC
Lin J., Gong Z., Lu Y., Cai J., Zhang J., Tan J., Huang Z., Chen S.. Recent Progress and Potential of G4 Ligands in Cancer Immunotherapy. Molecules. 2025;30(8):1805. doi: 10.3390/molecules30081805. PubMed DOI PMC
Neha, Das P., Verma S. P.. Dual Role of G-Quadruplex in Translocation Renal Cell Carcinoma: Exploring Plausible Cancer Therapeutic Innovation. Biochim. Biophys. Acta, Gen. Subj. 2020;1864(12):129719. doi: 10.1016/j.bbagen.2020.129719. PubMed DOI
Kratochvilová L., Dinová A., Valková N., Dobrovolná M., Sánchez-Murcia P. A., Brázda V.. Chromatin Immunoprecipitation Reveals P53 Binding to G-Quadruplex DNA Sequences in Myeloid Leukemia Cell Lines. ACS Bio Med Chem Au. 2025;5(2):283–298. doi: 10.1021/acsbiomedchemau.4c00124. PubMed DOI PMC
Robinson J., Flint G., Garner I., Galli S., Maher T. E., Kuimova M. K., Vilar R., McNeish I. A., Brown R., Keun H., Di Antonio M.. G-Quadruplex Structures Regulate Long-Range Transcriptional Reprogramming to Promote Drug Resistance in Ovarian Cancer Cells. Genome Biol. 2025;26(1):183. doi: 10.1186/s13059-025-03654-y. PubMed DOI PMC
Heyza J., Arora S., Zhang H., Conner K., Lei W., Floyd A., Deshmukh R., Sarver J., Trabbic C., Erhardt P., Chan T.-H., Dou Q., Patrick S.. Targeting the DNA Repair Endonuclease ERCC1-XPF with Green Tea Polyphenol Epigallocatechin-3-Gallate (EGCG) and Its Prodrug to Enhance Cisplatin Efficacy in Human Cancer Cells. Nutrients. 2018;10(11):1644. doi: 10.3390/nu10111644. PubMed DOI PMC
Bhowmik D., Fiorillo G., Lombardi P., Suresh Kumar G.. Recognition of Human Telomeric G-quadruplex DNA by Berberine Analogs: Effect of Substitution at the 9 and 13 Positions of the Isoquinoline Moiety. J. Mol. Recognit. 2015;28(12):722–730. doi: 10.1002/jmr.2486. PubMed DOI
Kaserer T., Rigo R., Schuster P., Alcaro S., Sissi C., Schuster D.. Optimized Virtual Screening Workflow for the Identification of Novel G-Quadruplex Ligands. J. Chem. Inf. Model. 2016;56(3):484–500. doi: 10.1021/acs.jcim.5b00658. PubMed DOI
Chanphai P., Tajmir-Riahi H. A.. Structural Dynamics of DNA Binding to Tea Catechins. Int. J. Biol. Macromol. 2019;125:238–243. doi: 10.1016/j.ijbiomac.2018.12.054. PubMed DOI
Li H., Hai J., Zhou J., Yuan G.. Exploration of Binding Affinity and Selectivity of Brucine with G-quadruplex in the C-myb Proto-oncogene by Electrospray Ionization Mass Spectrometry. Rapid Commun. Mass Spectrom. 2016;30(3):407–414. doi: 10.1002/rcm.7454. PubMed DOI
Wang J., Wolf R. M., Caldwell J. W., Kollman P. A., Case D. A.. Development and Testing of a General Amber Force Field. J. Comput. Chem. 2004;25(9):1157–1174. doi: 10.1002/jcc.20035. PubMed DOI
Jakalian A., Jack D. B., Bayly C. I. F.. Efficient Generation of High-quality Atomic Charges. AM1-BCC Model: II. Parameterization and Validation. J. Comput. Chem. 2002;23(16):1623–1641. doi: 10.1002/jcc.10128. PubMed DOI
Galindo-Murillo R., Robertson J. C., Zgarbová M., Šponer J., Otyepka M., Jurečka P., Cheatham T. E.. Assessing the Current State of Amber Force Field Modifications for DNA. J. Chem. Theory Comput. 2016;12(8):4114–4127. doi: 10.1021/acs.jctc.6b00186. PubMed DOI PMC
Mark P., Nilsson L.. Structure and Dynamics of the TIP3P, SPC, and SPC/E Water Models at 298 K. J. Phys. Chem. A. 2001;105(43):9954–9960. doi: 10.1021/jp003020w. DOI
Kräutler V., Van Gunsteren W. F., Hünenberger P. H.. A Fast SHAKE Algorithm to Solve Distance Constraint Equations for Small Molecules in Molecular Dynamics Simulations. J. Comput. Chem. 2001;22(5):501–508. doi: 10.1002/1096-987X(20010415)22:5<501::AID-JCC1021>3.0.CO;2-V. DOI
Case D. A., Aktulga H. M., Belfon K., Cerutti D. S., Cisneros G. A., Cruzeiro V. W. D., Forouzesh N., Giese T. J., Götz A. W., Gohlke H., Izadi S., Kasavajhala K., Kaymak M. C., King E., Kurtzman T., Lee T.-S., Li P., Liu J., Luchko T., Luo R., Manathunga M., Machado M. R., Nguyen H. M., O’Hearn K. A., Onufriev A. V., Pan F., Pantano S., Qi R., Rahnamoun A., Risheh A., Schott-Verdugo S., Shajan A., Swails J., Wang J., Wei H., Wu X., Wu Y., Zhang S., Zhao S., Zhu Q., Cheatham T. E., Roe D. R., Roitberg A., Simmerling C., York D. M., Nagan M. C., Merz K. M.. AmberTools. J. Chem. Inf. Model. 2023;63(20):6183–6191. doi: 10.1021/acs.jcim.3c01153. PubMed DOI PMC
Contreras-García J., Johnson E. R., Keinan S., Chaudret R., Piquemal J.-P., Beratan D. N., Yang W.. NCIPLOT: A Program for Plotting Noncovalent Interaction Regions. J. Chem. Theory Comput. 2011;7(3):625–632. doi: 10.1021/ct100641a. PubMed DOI PMC
Johnson E. R., Keinan S., Mori-Sánchez P., Contreras-García J., Cohen A. J., Yang W.. Revealing Noncovalent Interactions. J. Am. Chem. Soc. 2010;132(18):6498–6506. doi: 10.1021/ja100936w. PubMed DOI PMC
Bannwarth C., Caldeweyher E., Ehlert S., Hansen A., Pracht P., Seibert J., Spicher S., Grimme S.. Extended tight-binding Quantum Chemistry Methods. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2021;11(2):e1493. doi: 10.1002/wcms.1493. DOI
Hirata S., Head-Gordon M.. Time-Dependent Density Functional Theory within the Tamm–Dancoff Approximation. Chem. Phys. Lett. 1999;314(3–4):291–299. doi: 10.1016/S0009-2614(99)01149-5. DOI
Grimme S., Ehrlich S., Goerigk L.. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. J. Comput. Chem. 2011;32(7):1456–1465. doi: 10.1002/jcc.21759. PubMed DOI
Grimme S., Antony J., Ehrlich S., Krieg H.. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010;132(15):154104. doi: 10.1063/1.3382344. PubMed DOI
Weigend F., Ahlrichs R.. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys. 2005;7(18):3297. doi: 10.1039/b508541a. PubMed DOI
Renaud De La Faverie A., Guédin A., Bedrat A., Yatsunyk L. A., Mergny J.-L.. Thioflavin T as a Fluorescence Light-up Probe for G4 Formation. Nucleic Acids Res. 2014;42(8):e65–e65. doi: 10.1093/nar/gku111. PubMed DOI PMC
Plasser F.. TheoDORE: A Toolbox for a Detailed and Automated Analysis of Electronic Excited State Computations. J. Chem. Phys. 2020;152(8):084108. doi: 10.1063/1.5143076. PubMed DOI