Study on the Binding of Five Plant-Derived Secondary Metabolites to G‑Quadruplexes

. 2026 Jan 20 ; 11 (2) : 3096-3107. [epub] 20260105

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41585727

Chemical targeting of noncanonical secondary structures of DNA and RNA has emerged as a promising approach for therapeutic development. The most promising targets seem to be four-stranded structures in the G-rich regions of the genome, known as G-quadruplexes (G4s), which are associated with important regulatory regions including promoters. In this study, we tested and modeled the binding of five plant-derived secondary metabolites, known for their antiproliferative activity in vitro, to two G4s found in the human genome: the first at the c-Myc proto-oncogene and the second at the human telomere repeat region. Among the tested compounds, brucine exhibited the strongest interaction with both G4 sequences, while ellagic acid demonstrated binding efficacy comparable to that of brucine in the c-Myc sequence. Through molecular dynamics simulations and the Markov state model, we explored the binding modes of these ligands, elucidated the G4 stability in the bound state, and investigated the fluorescence quenching effect of thioflavin T (ThT) upon its displacement. The biological effects of these natural compounds were investigated in human cell lines, and the interaction with G4s was verified experimentally using a fluorescence displacement assay and CD spectroscopy. This study demonstrates the interaction of these natural compounds with the G4 structures and their implications for therapeutic targeting.

Zobrazit více v PubMed

Liu Q., Wang Q., Lv C., Liu Z., Gao H., Chen Y., Zhao G.. Brucine Inhibits Proliferation of Glioblastoma Cells by Targeting the G-Quadruplexes in the c-Myb Promoter. J. Cancer. 2021;12(7):1990–1999. doi: 10.7150/jca.53689. PubMed DOI PMC

Kang Q., Zheng K., Jiang G.-M., Li Y.-K., Liang Y.-B., Geng Q., Qian C.-H., Wang Q.-B., He Z.-Y., Huang S.-Q., Yang C., Li J., Li Y.-H., Ke Y.. Brucine Suppresses Proliferation and Promotes Apoptosis of Human Cholangiacarcinoma Cells via the Inhibition of COX2 Expression. J. Cancer. 2023;14(14):2700–2706. doi: 10.7150/jca.87514. PubMed DOI PMC

Ashrafizadeh M., Zarrabi A., Mirzaei S., Hashemi F., Samarghandian S., Zabolian A., Hushmandi K., Ang H. L., Sethi G., Kumar A. P., Ahn K. S., Nabavi N., Khan H., Makvandi P., Varma R. S.. Gallic Acid for Cancer Therapy: Molecular Mechanisms and Boosting Efficacy by Nanoscopical Delivery. Food Chem. Toxicol. 2021;157:112576. doi: 10.1016/j.fct.2021.112576. PubMed DOI

Lu G., Wang X., Cheng M., Wang S., Ma K.. The Multifaceted Mechanisms of Ellagic Acid in the Treatment of Tumors: State-of-the-Art. Biomed. Pharmacother. 2023;165:115132. doi: 10.1016/j.biopha.2023.115132. PubMed DOI

Shay J., Elbaz H. A., Lee I., Zielske S. P., Malek M. H., Hüttemann M.. Molecular Mechanisms and Therapeutic Effects of (−)-Epicatechin and Other Polyphenols in Cancer, Inflammation, Diabetes, and Neurodegeneration. Oxid. Med. Cell. Longevity. 2015;2015:181260. doi: 10.1155/2015/181260. PubMed DOI PMC

Cai Z.-Y., Li X.-M., Liang J.-P., Xiang L.-P., Wang K.-R., Shi Y.-L., Yang R., Shi M., Ye J.-H., Lu J.-L., Zheng X.-Q., Liang Y.-R.. Bioavailability of Tea Catechins and Its Improvement. Molecules. 2018;23(9):2346. doi: 10.3390/molecules23092346. PubMed DOI PMC

Bartosikova L., Necas J.. Epigallocatechin Gallate: A Review. Vet. Med. 2018;63(10):443–467. doi: 10.17221/31/2018-VETMED. DOI

Dong S.-H., Liu J., Ge Y.-Z., Dong L., Xu C.-H., Ding J., Yue J.-M.. Chemical Constituents from Brucea Javanica. Phytochemistry. 2013;85:175–184. doi: 10.1016/j.phytochem.2012.08.018. PubMed DOI

Shu G., Mi X., Cai J., Zhang X., Yin W., Yang X., Li Y., Chen L., Deng X.. Brucine, an Alkaloid from Seeds of Strychnos Nux-Vomica Linn., Represses Hepatocellular Carcinoma Cell Migration and Metastasis: The Role of Hypoxia Inducible Factor 1 Pathway. Toxicol. Lett. 2013;222(2):91–101. doi: 10.1016/j.toxlet.2013.07.024. PubMed DOI

Lu L., Huang R., Wu Y., Jin J.-M., Chen H.-Z., Zhang L.-J., Luan X.. Brucine: A Review of Phytochemistry, Pharmacology, and Toxicology. Front. Pharmacol. 2020;11:377. doi: 10.3389/fphar.2020.00377. PubMed DOI PMC

Kongpichitchoke T., Chiu M.-T., Huang T.-C., Hsu J.-L.. Gallic Acid Content in Taiwanese Teas at Different Degrees of Fermentation and Its Antioxidant Activity by Inhibiting PKCδ Activation: In Vitro and in Silico Studies. Molecules. 2016;21(10):1346. doi: 10.3390/molecules21101346. PubMed DOI PMC

Kahkeshani N., Farzaei F., Fotouhi M., Alavi S. S., Bahramsoltani R., Naseri R., Momtaz S., Abbasabadi Z., Rahimi R., Farzaei M. H.. et al. Pharmacological Effects of Gallic Acid in Health and Disease: A Mechanistic Review. Iran. J. Basic Med. Sci. 2019;22(3):225–237. doi: 10.22038/ijbms.2019.32806.7897. PubMed DOI PMC

Choińska R., Dąbrowska K., Świsłocka R., Lewandowski W., Świergiel A. H.. Antimicrobial Properties of Mandelic Acid, Gallic Acid and Their Derivatives. Mini-Rev. Med. Chem. 2021;21(17):2544–2550. doi: 10.2174/1389557521666210105123834. PubMed DOI

Prakash M., Basavaraj B. V., Chidambara Murthy K. N.. Biological Functions of Epicatechin: Plant Cell to Human Cell Health. J. Funct. Foods. 2019;52:14–24. doi: 10.1016/j.jff.2018.10.021. DOI

Cuevas E., Limón D., Pérez-Severiano F., Díaz A., Ortega L., Zenteno E., Guevara J.. Antioxidant Effects of Epicatechin on the Hippocampal Toxicity Caused by Amyloid-Beta 25–35 in Rats. Eur. J. Pharmacol. 2009;616(1–3):122–127. doi: 10.1016/j.ejphar.2009.06.013. PubMed DOI

Song H., Wu H., Dong J., Huang S., Ye J., Liu R.. Ellagic Acid Alleviates Rheumatoid Arthritis in Rats through Inhibiting MTA1/HDAC1-Mediated Nur77 Deacetylation. Mediators Inflammation. 2021;2021:6359652. doi: 10.1155/2021/6359652. PubMed DOI PMC

Hou Z., Sang S., You H., Lee M.-J., Hong J., Chin K.-V., Yang C. S.. Mechanism of Action of (−)-Epigallocatechin-3-Gallate: Auto-Oxidation–Dependent Inactivation of Epidermal Growth Factor Receptor and Direct Effects on Growth Inhibition in Human Esophageal Cancer KYSE 150 Cells. Cancer Res. 2005;65(17):8049–8056. doi: 10.1158/0008-5472.CAN-05-0480. PubMed DOI

Cascella M., Bimonte S., Muzio M. R., Schiavone V., Cuomo A.. The Efficacy of Epigallocatechin-3-Gallate (Green Tea) in the Treatment of Alzheimer’s Disease: An Overview of Pre-Clinical Studies and Translational Perspectives in Clinical Practice. Infect. Agents Cancer. 2017;12(1):36. doi: 10.1186/s13027-017-0145-6. PubMed DOI PMC

Wright W. E., Tesmer V. M., Huffman K. E., Levene S. D., Shay J. W.. Normal Human Chromosomes Have Long G-Rich Telomeric Overhangs at One End. Genes Dev. 1997;11(21):2801–2809. doi: 10.1101/gad.11.21.2801. PubMed DOI PMC

Sheng R., Gu Z.-L., Xie M.-L.. Epigallocatechin Gallate, the Major Component of Polyphenols in Green Tea, Inhibits Telomere Attrition Mediated Cardiomyocyte Apoptosis in Cardiac Hypertrophy. Int. J. Cardiol. 2013;162(3):199–209. doi: 10.1016/j.ijcard.2011.07.083. PubMed DOI

Prasanth M., Sivamaruthi B., Chaiyasut C., Tencomnao T.. A Review of the Role of Green Tea (Camellia Sinensis) in Antiphotoaging, Stress Resistance, Neuroprotection, and Autophagy. Nutrients. 2019;11(2):474. doi: 10.3390/nu11020474. PubMed DOI PMC

Burge S., Parkinson G. N., Hazel P., Todd A. K., Neidle S. Q. D.. Sequence, Topology and Structure. Nucleic Acids Res. 2006;34(19):5402–5415. doi: 10.1093/nar/gkl655. PubMed DOI PMC

Sen D., Gilbert W.. A Sodium-Potassium Switch in the Formation of Four-Stranded G4-DNA. Nature. 1990;344(6265):410–414. doi: 10.1038/344410a0. PubMed DOI

Bhattacharyya D., Mirihana Arachchilage G., Basu S.. Metal Cations in G-Quadruplex Folding and Stability. Front. Chem. 2016;4:4. doi: 10.3389/fchem.2016.00038. PubMed DOI PMC

Parkinson G. N., Lee M. P. H., Neidle S.. Crystal Structure of Parallel Quadruplexes from Human Telomeric DNA. Nature. 2002;417(6891):876–880. doi: 10.1038/nature755. PubMed DOI

Hazel P.. Predictive Modelling of Topology and Loop Variations in Dimeric DNA Quadruplex Structures. Nucleic Acids Res. 2006;34(7):2117–2127. doi: 10.1093/nar/gkl182. PubMed DOI PMC

Chambers V. S., Marsico G., Boutell J. M., Di Antonio M., Smith G. P., Balasubramanian S.. High-Throughput Sequencing of DNA G-Quadruplex Structures in the Human Genome. Nat. Biotechnol. 2015;33(8):877–881. doi: 10.1038/nbt.3295. PubMed DOI

Nishio M., Tsukakoshi K., Ikebukuro K.. G-Quadruplex: Flexible Conformational Changes by Cations, pH, Crowding and Its Applications to Biosensing. Biosens. Bioelectron. 2021;178:113030. doi: 10.1016/j.bios.2021.113030. PubMed DOI

Carvalho J., Mergny J.-L., Salgado G. F., Queiroz J. A., Cruz C. G.-Q.. Friend or Foe: The Role of the G-Quartet in Anticancer Strategies. Trends Mol. Med. 2020;26(9):848–861. doi: 10.1016/j.molmed.2020.05.002. PubMed DOI

Monsen R. C., DeLeeuw L. W., Dean W. L., Gray R. D., Chakravarthy S., Hopkins J. B., Chaires J. B., Trent J. O.. Long Promoter Sequences Form Higher-Order G-Quadruplexes: An Integrative Structural Biology Study of c-Myc, k-Ras and c-Kit Promoter Sequences. Nucleic Acids Res. 2022;50(7):4127–4147. doi: 10.1093/nar/gkac182. PubMed DOI PMC

Esain-Garcia I., Kirchner A., Melidis L., Tavares R. D. C. A., Dhir S., Simeone A., Yu Z., Madden S. K., Hermann R., Tannahill D., Balasubramanian S.. G-Quadruplex DNA Structure Is a Positive Regulator of MYC Transcription. Proc. Natl. Acad. Sci. U. S. A. 2024;121(7):e2320240121. doi: 10.1073/pnas.2320240121. PubMed DOI PMC

Bugaut A., Balasubramanian S.. 5′-UTR RNA G-Quadruplexes: Translation Regulation and Targeting. Nucleic Acids Res. 2012;40(11):4727–4741. doi: 10.1093/nar/gks068. PubMed DOI PMC

Ferret L., Alvarez-Valadez K., Rivière J., Muller A., Bohálová N., Yu L., Guittat L., Brázda V., Kroemer G., Mergny J.-L., Djavaheri-Mergny M.. G-Quadruplex Ligands as Potent Regulators of Lysosomes. Autophagy. 2023;19(7):1901–1915. doi: 10.1080/15548627.2023.2170071. PubMed DOI PMC

Brázda V., Mergny J.-L.. Quadruplexes and Aging: G4-Binding Proteins Regulate the Presence of miRNA in Small Extracellular Vesicles (sEVs) Biochimie. 2023;214:69–72. doi: 10.1016/j.biochi.2023.01.014. PubMed DOI

Choi E. W., Nayak L. V., Bates P. J.. Cancer-Selective Antiproliferative Activity Is a General Property of Some G-Rich Oligodeoxynucleotides. Nucleic Acids Res. 2010;38(5):1623–1635. doi: 10.1093/nar/gkp1088. PubMed DOI PMC

Kelleher C., Kurth I., Lingner J.. Human Protection of Telomeres 1 (POT1) Is a Negative Regulator of Telomerase Activity In Vitro. Mol. Cell. Biol. 2005;25(2):808–818. doi: 10.1128/MCB.25.2.808-818.2005. PubMed DOI PMC

Hudson J. S., Ding L., Le V., Lewis E., Graves D.. Recognition and Binding of Human Telomeric G-Quadruplex DNA by Unfolding Protein 1. Biochemistry. 2014;53(20):3347–3356. doi: 10.1021/bi500351u. PubMed DOI PMC

Sanchez-Martin V., Plaza-Calonge M. D. C., Soriano-Lerma A., Ortiz-Gonzalez M., Linde-Rodriguez A., Perez-Carrasco V., Ramirez-Macias I., Cuadros M., Gutierrez-Fernandez J., Murciano-Calles J., Rodríguez-Manzaneque J. C., Soriano M., Garcia-Salcedo J. A.. Gallic Acid: A Natural Phenolic Compound Exerting Antitumoral Activities in Colorectal Cancer via Interaction with G-Quadruplexes. Cancers. 2022;14(11):2648. doi: 10.3390/cancers14112648. PubMed DOI PMC

Pattanayak R., Basak P., Sen S., Bhattacharyya M.. Interaction of KRAS G-Quadruplex with Natural Polyphenols: A Spectroscopic Analysis with Molecular Modeling. Int. J. Biol. Macromol. 2016;89:228–237. doi: 10.1016/j.ijbiomac.2016.04.074. PubMed DOI

Stsiapura V. I., Maskevich A. A., Kuzmitsky V. A., Turoverov K. K., Kuznetsova I. M.. Computational Study of Thioflavin T Torsional Relaxation in the Excited State. J. Phys. Chem. A. 2007;111(22):4829–4835. doi: 10.1021/jp070590o. PubMed DOI

Kuzuhara T., Sei Y., Yamaguchi K., Suganuma M., Fujiki H.. DNA and RNA as New Binding Targets of Green Tea Catechins. J. Biol. Chem. 2006;281(25):17446–17456. doi: 10.1074/jbc.M601196200. PubMed DOI

Awadasseid A., Ma X., Wu Y., Zhang W.. G-Quadruplex Stabilization via Small-Molecules as a Potential Anti-Cancer Strategy. Biomed. Pharmacother. 2021;139:111550. doi: 10.1016/j.biopha.2021.111550. PubMed DOI

Bernal A., Tusell L.. Telomeres: Implications for Cancer Development. Int. J. Mol. Sci. 2018;19(1):294. doi: 10.3390/ijms19010294. PubMed DOI PMC

Choudhury S. D., Kumar P., Choudhury D.. Bioactive Nutraceuticals as G4 Stabilizers: Potential Cancer Prevention and Therapya Critical Review. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2024;397(6):3585–3616. doi: 10.1007/s00210-023-02857-z. PubMed DOI

PubChem; 2025, https://pubchem.ncbi.nlm.nih.gov/. (accessed 11–February–2025).

Mohanty J., Barooah N., Dhamodharan V., Harikrishna S., Pradeepkumar P. I., Bhasikuttan A. C.. Thioflavin T as an Efficient Inducer and Selective Fluorescent Sensor for the Human Telomeric G-Quadruplex DNA. J. Am. Chem. Soc. 2013;135(1):367–376. doi: 10.1021/ja309588h. PubMed DOI

Luo D., Mu Y.. All-Atomic Simulations on Human Telomeric G-Quadruplex DNA Binding with Thioflavin T. J. Phys. Chem. B. 2015;119(15):4955–4967. doi: 10.1021/acs.jpcb.5b01107. PubMed DOI

Dickerhoff J., Brundridge N., McLuckey S. A., Yang D.. Berberine Molecular Recognition of the Parallel MYC G-Quadruplex in Solution. J. Med. Chem. 2021;64(21):16205–16212. doi: 10.1021/acs.jmedchem.1c01508. PubMed DOI PMC

Amdursky N., Erez Y., Huppert D.. Molecular Rotors: What Lies Behind the High Sensitivity of the Thioflavin-T Fluorescent Marker. Acc. Chem. Res. 2012;45(9):1548–1557. doi: 10.1021/ar300053p. PubMed DOI

Voropai N. I.. System Energy Studies at the Energy Systems Institute. Int. J. Global Energy Issues. 2003;20(4):317. doi: 10.1504/IJGEI.2003.004405. DOI

Sulatskaya A. I., Lavysh A. V., Maskevich A. A., Kuznetsova I. M., Turoverov K. K.. Thioflavin T Fluoresces as Excimer in Highly Concentrated Aqueous Solutions and as Monomer Being Incorporated in Amyloid Fibrils. Sci. Rep. 2017;7(1):2146. doi: 10.1038/s41598-017-02237-7. PubMed DOI PMC

Klett J., Núñez-Salgado A., Dos Santos H. G., Cortés-Cabrera Á., Perona A., Gil-Redondo R., Abia D., Gago F., Morreale A.. MM-ISMSA: An Ultrafast and Accurate Scoring Function for Protein–Protein Docking. J. Chem. Theory Comput. 2012;8(9):3395–3408. doi: 10.1021/ct300497z. PubMed DOI

Scherer M. K., Trendelkamp-Schroer B., Paul F., Pérez-Hernández G., Hoffmann M., Plattner N., Wehmeyer C., Prinz J.-H., Noé F.. PyEMMA 2: A Software Package for Estimation, Validation, and Analysis of Markov Models. J. Chem. Theory Comput. 2015;11(11):5525–5542. doi: 10.1021/acs.jctc.5b00743. PubMed DOI

Shu H., Zhang R., Xiao K., Yang J., Sun X.. G-Quadruplex-Binding Proteins: Promising Targets for Drug Design. Biomolecules. 2022;12(5):648. doi: 10.3390/biom12050648. PubMed DOI PMC

Teng F.-Y., Jiang Z.-Z., Guo M., Tan X.-Z., Chen F., Xi X.-G., Xu Y.. G-Quadruplex DNA: A Novel Target for Drug Design. Cell. Mol. Life Sci. 2021;78(19–20):6557–6583. doi: 10.1007/s00018-021-03921-8. PubMed DOI PMC

Figueiredo J., Mergny J.-L., Cruz C.. G-Quadruplex Ligands in Cancer Therapy: Progress, Challenges, and Clinical Perspectives. Life Sci. 2024;340:122481. doi: 10.1016/j.lfs.2024.122481. PubMed DOI

Alessandrini I., Recagni M., Zaffaroni N., Folini M.. On the Road to Fight Cancer: The Potential of G-Quadruplex Ligands as Novel Therapeutic Agents. Int. J. Mol. Sci. 2021;22(11):5947. doi: 10.3390/ijms22115947. PubMed DOI PMC

Lin J., Gong Z., Lu Y., Cai J., Zhang J., Tan J., Huang Z., Chen S.. Recent Progress and Potential of G4 Ligands in Cancer Immunotherapy. Molecules. 2025;30(8):1805. doi: 10.3390/molecules30081805. PubMed DOI PMC

Neha, Das P., Verma S. P.. Dual Role of G-Quadruplex in Translocation Renal Cell Carcinoma: Exploring Plausible Cancer Therapeutic Innovation. Biochim. Biophys. Acta, Gen. Subj. 2020;1864(12):129719. doi: 10.1016/j.bbagen.2020.129719. PubMed DOI

Kratochvilová L., Dinová A., Valková N., Dobrovolná M., Sánchez-Murcia P. A., Brázda V.. Chromatin Immunoprecipitation Reveals P53 Binding to G-Quadruplex DNA Sequences in Myeloid Leukemia Cell Lines. ACS Bio Med Chem Au. 2025;5(2):283–298. doi: 10.1021/acsbiomedchemau.4c00124. PubMed DOI PMC

Robinson J., Flint G., Garner I., Galli S., Maher T. E., Kuimova M. K., Vilar R., McNeish I. A., Brown R., Keun H., Di Antonio M.. G-Quadruplex Structures Regulate Long-Range Transcriptional Reprogramming to Promote Drug Resistance in Ovarian Cancer Cells. Genome Biol. 2025;26(1):183. doi: 10.1186/s13059-025-03654-y. PubMed DOI PMC

Heyza J., Arora S., Zhang H., Conner K., Lei W., Floyd A., Deshmukh R., Sarver J., Trabbic C., Erhardt P., Chan T.-H., Dou Q., Patrick S.. Targeting the DNA Repair Endonuclease ERCC1-XPF with Green Tea Polyphenol Epigallocatechin-3-Gallate (EGCG) and Its Prodrug to Enhance Cisplatin Efficacy in Human Cancer Cells. Nutrients. 2018;10(11):1644. doi: 10.3390/nu10111644. PubMed DOI PMC

Bhowmik D., Fiorillo G., Lombardi P., Suresh Kumar G.. Recognition of Human Telomeric G-quadruplex DNA by Berberine Analogs: Effect of Substitution at the 9 and 13 Positions of the Isoquinoline Moiety. J. Mol. Recognit. 2015;28(12):722–730. doi: 10.1002/jmr.2486. PubMed DOI

Kaserer T., Rigo R., Schuster P., Alcaro S., Sissi C., Schuster D.. Optimized Virtual Screening Workflow for the Identification of Novel G-Quadruplex Ligands. J. Chem. Inf. Model. 2016;56(3):484–500. doi: 10.1021/acs.jcim.5b00658. PubMed DOI

Chanphai P., Tajmir-Riahi H. A.. Structural Dynamics of DNA Binding to Tea Catechins. Int. J. Biol. Macromol. 2019;125:238–243. doi: 10.1016/j.ijbiomac.2018.12.054. PubMed DOI

Li H., Hai J., Zhou J., Yuan G.. Exploration of Binding Affinity and Selectivity of Brucine with G-quadruplex in the C-myb Proto-oncogene by Electrospray Ionization Mass Spectrometry. Rapid Commun. Mass Spectrom. 2016;30(3):407–414. doi: 10.1002/rcm.7454. PubMed DOI

Wang J., Wolf R. M., Caldwell J. W., Kollman P. A., Case D. A.. Development and Testing of a General Amber Force Field. J. Comput. Chem. 2004;25(9):1157–1174. doi: 10.1002/jcc.20035. PubMed DOI

Jakalian A., Jack D. B., Bayly C. I. F.. Efficient Generation of High-quality Atomic Charges. AM1-BCC Model: II. Parameterization and Validation. J. Comput. Chem. 2002;23(16):1623–1641. doi: 10.1002/jcc.10128. PubMed DOI

Galindo-Murillo R., Robertson J. C., Zgarbová M., Šponer J., Otyepka M., Jurečka P., Cheatham T. E.. Assessing the Current State of Amber Force Field Modifications for DNA. J. Chem. Theory Comput. 2016;12(8):4114–4127. doi: 10.1021/acs.jctc.6b00186. PubMed DOI PMC

Mark P., Nilsson L.. Structure and Dynamics of the TIP3P, SPC, and SPC/E Water Models at 298 K. J. Phys. Chem. A. 2001;105(43):9954–9960. doi: 10.1021/jp003020w. DOI

Kräutler V., Van Gunsteren W. F., Hünenberger P. H.. A Fast SHAKE Algorithm to Solve Distance Constraint Equations for Small Molecules in Molecular Dynamics Simulations. J. Comput. Chem. 2001;22(5):501–508. doi: 10.1002/1096-987X(20010415)22:5<501::AID-JCC1021>3.0.CO;2-V. DOI

Case D. A., Aktulga H. M., Belfon K., Cerutti D. S., Cisneros G. A., Cruzeiro V. W. D., Forouzesh N., Giese T. J., Götz A. W., Gohlke H., Izadi S., Kasavajhala K., Kaymak M. C., King E., Kurtzman T., Lee T.-S., Li P., Liu J., Luchko T., Luo R., Manathunga M., Machado M. R., Nguyen H. M., O’Hearn K. A., Onufriev A. V., Pan F., Pantano S., Qi R., Rahnamoun A., Risheh A., Schott-Verdugo S., Shajan A., Swails J., Wang J., Wei H., Wu X., Wu Y., Zhang S., Zhao S., Zhu Q., Cheatham T. E., Roe D. R., Roitberg A., Simmerling C., York D. M., Nagan M. C., Merz K. M.. AmberTools. J. Chem. Inf. Model. 2023;63(20):6183–6191. doi: 10.1021/acs.jcim.3c01153. PubMed DOI PMC

Contreras-García J., Johnson E. R., Keinan S., Chaudret R., Piquemal J.-P., Beratan D. N., Yang W.. NCIPLOT: A Program for Plotting Noncovalent Interaction Regions. J. Chem. Theory Comput. 2011;7(3):625–632. doi: 10.1021/ct100641a. PubMed DOI PMC

Johnson E. R., Keinan S., Mori-Sánchez P., Contreras-García J., Cohen A. J., Yang W.. Revealing Noncovalent Interactions. J. Am. Chem. Soc. 2010;132(18):6498–6506. doi: 10.1021/ja100936w. PubMed DOI PMC

Bannwarth C., Caldeweyher E., Ehlert S., Hansen A., Pracht P., Seibert J., Spicher S., Grimme S.. Extended tight-binding Quantum Chemistry Methods. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2021;11(2):e1493. doi: 10.1002/wcms.1493. DOI

Hirata S., Head-Gordon M.. Time-Dependent Density Functional Theory within the Tamm–Dancoff Approximation. Chem. Phys. Lett. 1999;314(3–4):291–299. doi: 10.1016/S0009-2614(99)01149-5. DOI

Grimme S., Ehrlich S., Goerigk L.. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. J. Comput. Chem. 2011;32(7):1456–1465. doi: 10.1002/jcc.21759. PubMed DOI

Grimme S., Antony J., Ehrlich S., Krieg H.. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010;132(15):154104. doi: 10.1063/1.3382344. PubMed DOI

Weigend F., Ahlrichs R.. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys. 2005;7(18):3297. doi: 10.1039/b508541a. PubMed DOI

Renaud De La Faverie A., Guédin A., Bedrat A., Yatsunyk L. A., Mergny J.-L.. Thioflavin T as a Fluorescence Light-up Probe for G4 Formation. Nucleic Acids Res. 2014;42(8):e65–e65. doi: 10.1093/nar/gku111. PubMed DOI PMC

Plasser F.. TheoDORE: A Toolbox for a Detailed and Automated Analysis of Electronic Excited State Computations. J. Chem. Phys. 2020;152(8):084108. doi: 10.1063/1.5143076. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...