Multiple sclerosis (MS) is a devastating immune-mediated disorder of the central nervous system resulting in progressive disability accumulation. As there is no cure available yet for MS, the primary therapeutic objective is to reduce relapses and to slow down disability progression as early as possible during the disease to maintain and/or improve health-related quality of life. However, optimizing treatment for people with MS (pwMS) is complex and challenging due to the many factors involved and in particular, the high degree of clinical and sub-clinical heterogeneity in disease progression among pwMS. In this paper, we discuss these many different challenges complicating treatment optimization for pwMS as well as how a shift towards a more pro-active, data-driven and personalized medicine approach could potentially improve patient outcomes for pwMS. We describe how the 'Clinical Impact through AI-assisted MS Care' (CLAIMS) project serves as a recent example of how to realize such a shift towards personalized treatment optimization for pwMS through the development of a platform that offers a holistic view of all relevant patient data and biomarkers, and then using this data to enable AI-supported prognostic modelling.
- MeSH
- Biomarkers MeSH
- Precision Medicine * methods trends MeSH
- Quality of Life MeSH
- Humans MeSH
- Prognosis MeSH
- Disease Progression MeSH
- Multiple Sclerosis * therapy immunology MeSH
- Artificial Intelligence * trends MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Estimating structural connectivity from diffusion-weighted magnetic resonance imaging is a challenging task, partly due to the presence of false-positive connections and the misestimation of connection weights. Building on previous efforts, the MICCAI-CDMRI Diffusion-Simulated Connectivity (DiSCo) challenge was carried out to evaluate state-of-the-art connectivity methods using novel large-scale numerical phantoms. The diffusion signal for the phantoms was obtained from Monte Carlo simulations. The results of the challenge suggest that methods selected by the 14 teams participating in the challenge can provide high correlations between estimated and ground-truth connectivity weights, in complex numerical environments. Additionally, the methods used by the participating teams were able to accurately identify the binary connectivity of the numerical dataset. However, specific false positive and false negative connections were consistently estimated across all methods. Although the challenge dataset doesn't capture the complexity of a real brain, it provided unique data with known macrostructure and microstructure ground-truth properties to facilitate the development of connectivity estimation methods.
- MeSH
- Diffusion Magnetic Resonance Imaging * methods MeSH
- Phantoms, Imaging MeSH
- Humans MeSH
- Monte Carlo Method MeSH
- Brain diagnostic imaging MeSH
- Image Processing, Computer-Assisted * methods MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
The growing interdisciplinary research field of psycholinguistics is in constant need of new and up-to-date tools which will allow researchers to answer complex questions, but also expand on languages other than English, which dominates the field. One type of such tools are picture datasets which provide naming norms for everyday objects. However, existing databases tend to be small in terms of the number of items they include, and have also been normed in a limited number of languages, despite the recent boom in multilingualism research. In this paper we present the Multilingual Picture (Multipic) database, containing naming norms and familiarity scores for 500 coloured pictures, in thirty-two languages or language varieties from around the world. The data was validated with standard methods that have been used for existing picture datasets. This is the first dataset to provide naming norms, and translation equivalents, for such a variety of languages; as such, it will be of particular value to psycholinguists and other interested researchers. The dataset has been made freely available.
- MeSH
- Databases, Factual MeSH
- Language MeSH
- Humans MeSH
- Multilingualism * MeSH
- Psycholinguistics * MeSH
- Recognition, Psychology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Dataset MeSH
Having the means to share research data openly is essential to modern science. For human research, a key aspect in this endeavor is obtaining consent from participants, not just to take part in a study, which is a basic ethical principle, but also to share their data with the scientific community. To ensure that the participants' privacy is respected, national and/or supranational regulations and laws are in place. It is, however, not always clear to researchers what the implications of those are, nor how to comply with them. The Open Brain Consent (https://open-brain-consent.readthedocs.io) is an international initiative that aims to provide researchers in the brain imaging community with information about data sharing options and tools. We present here a short history of this project and its latest developments, and share pointers to consent forms, including a template consent form that is compliant with the EU general data protection regulation. We also share pointers to an associated data user agreement that is not only useful in the EU context, but also for any researchers dealing with personal (clinical) data elsewhere.
- MeSH
- Informed Consent * ethics MeSH
- Humans MeSH
- Brain diagnostic imaging MeSH
- Neuroimaging * ethics MeSH
- Information Dissemination * ethics MeSH
- Research Subjects * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Editorial MeSH