Biodistribution analyses of nanocarriers are often performed with optical imaging. Though dye tags can interact with transporters, e.g., organic anion transporting polypeptides (OATPs), their influence on biodistribution was hardly studied. Therefore, this study compared tumor cell uptake and biodistribution (in A431 tumor-bearing mice) of four near-infrared fluorescent dyes (AF750, IRDye750, Cy7, DY-750) and dye-labeled poly(N-(2-hydroxypropyl)methacrylamide)-based nanocarriers (dye-pHPMAs). Tumor cell uptake of hydrophobic dyes (Cy7, DY-750) was higher than that of hydrophilic dyes (AF750, IRDye750), and was actively mediated but not related to OATPs. Free dyes' elimination depended on their hydrophobicity, and tumor uptake correlated with blood circulation times. Dye-pHPMAs circulated longer and accumulated stronger in tumors than free dyes. Dye labeling significantly influenced nanocarriers' tumor accumulation and biodistribution. Therefore, low-interference dyes and further exploration of dye tags are required to achieve the most unbiased results possible. In our assessment, AF750 and IRDye750 best qualified for labeling hydrophilic nanocarriers.
- MeSH
- fluorescenční barviva chemie MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nádory * diagnostické zobrazování farmakoterapie MeSH
- nosiče léků * chemie MeSH
- optické zobrazování MeSH
- tkáňová distribuce MeSH
- zkreslení výsledků (epidemiologie) MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Rationale: The blood-brain barrier (BBB) is a major obstacle for drug delivery to the brain. Sonopermeation, which relies on the combination of ultrasound and microbubbles, has emerged as a powerful tool to permeate the BBB, enabling the extravasation of drugs and drug delivery systems (DDS) to and into the central nervous system (CNS). When aiming to improve the treatment of high medical need brain disorders, it is important to systematically study nanomedicine translocation across the sonopermeated BBB. To this end, we here employed multimodal and multiscale optical imaging to investigate the impact of DDS size on brain accumulation, extravasation and penetration upon sonopermeation. Methods: Two prototypic DDS, i.e. 10 nm-sized pHPMA polymers and 100 nm-sized PEGylated liposomes, were labeled with fluorophores and intravenously injected in healthy CD-1 nude mice. Upon sonopermeation, computed tomography-fluorescence molecular tomography, fluorescence reflectance imaging, fluorescence microscopy, confocal microscopy and stimulated emission depletion nanoscopy were used to study the effect of DDS size on their translocation across the BBB. Results: Sonopermeation treatment enabled safe and efficient opening of the BBB, which was confirmed by staining extravasated endogenous IgG. No micro-hemorrhages, edema and necrosis were detected in H&E stainings. Multimodal and multiscale optical imaging showed that sonopermeation promoted the accumulation of nanocarriers in mouse brains, and that 10 nm-sized polymeric DDS accumulated more strongly and penetrated deeper into the brain than 100 nm-sized liposomes. Conclusions: BBB opening via sonopermeation enables safe and efficient delivery of nanomedicine formulations to and into the brain. When looking at accumulation and penetration (and when neglecting issues such as drug loading capacity and therapeutic efficacy) smaller-sized DDS are found to be more suitable for drug delivery across the BBB than larger-sized DDS. These findings are valuable for better understanding and further developing nanomedicine-based strategies for the treatment of CNS disorders.
- MeSH
- fluorescenční barviva aplikace a dávkování MeSH
- hematoencefalická bariéra diagnostické zobrazování metabolismus MeSH
- lékové transportní systémy metody MeSH
- liposomy aplikace a dávkování MeSH
- mikrobubliny MeSH
- mozek diagnostické zobrazování MeSH
- myši nahé MeSH
- myši MeSH
- nanomedicína metody MeSH
- nemoci mozku farmakoterapie MeSH
- optické zobrazování metody MeSH
- ultrasonografie metody MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH