Pleiotropic variants (i.e. genetic polymorphisms influencing more than one phenotype) are often associated with cancer risk. A scan of pleiotropic variants was successfully conducted 10 years ago in relation to pancreatic ductal adenocarcinoma susceptibility. However, in the last decade, genetic association studies performed on several human traits have greatly increased the number of known pleiotropic variants. Based on the hypothesis that variants already associated with a least one trait have a higher probability of association with other traits, 61 052 variants reported to be associated by at least one genome-wide association study with at least one human trait were tested in the present study consisting of two phases (discovery and validation), comprising a total of 16 055 pancreatic ductal adenocarcinoma (PDAC) cases and 212 149 controls. The meta-analysis of the two phases showed two loci (10q21.1-rs4948550 (P = 6.52 × 10-5) and 7q36.3-rs288762 (P = 3.03 × 10-5) potentially associated with PDAC risk. 10q21.1-rs4948550 shows a high degree of pleiotropy and it is also associated with colorectal cancer risk while 7q36.3-rs288762 is situated 28,558 base pairs upstream of the Sonic Hedgehog (SHH) gene, which is involved in the cell-differentiation process and PDAC etiopathogenesis. In conclusion, none of the single nucleotide polymorphisms (SNPs) showed a formally statistically significant association after correction for multiple testing. However, given their pleiotropic nature and association with various human traits including colorectal cancer, the two SNPs showing the best associations with PDAC risk merit further investigation through fine mapping and ad hoc functional studies.
- MeSH
- celogenomová asociační studie * MeSH
- duktální karcinom slinivky břišní * genetika MeSH
- genetická pleiotropie * MeSH
- genetická predispozice k nemoci * MeSH
- jednonukleotidový polymorfismus * MeSH
- lidé MeSH
- lidské chromozomy, pár 10 genetika MeSH
- lidské chromozomy, pár 7 genetika MeSH
- nádory slinivky břišní * genetika MeSH
- studie případů a kontrol MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
Targeting poly(ADP-ribose) glycohydrolase (PARG) is currently explored as a therapeutic approach to treat various cancer types, but we have a poor understanding of the specific genetic vulnerabilities that would make cancer cells susceptible to such a tailored therapy. Moreover, the identification of such vulnerabilities is of interest for targeting BRCA2;p53-deficient tumors that have acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPi) through loss of PARG expression. Here, by performing whole-genome CRISPR/Cas9 drop-out screens, we identify various genes involved in DNA repair to be essential for the survival of PARG;BRCA2;p53-deficient cells. In particular, our findings reveal EXO1 and FEN1 as major synthetic lethal interactors of PARG loss. We provide evidence for compromised replication fork progression, DNA single-strand break repair, and Okazaki fragment processing in PARG;BRCA2;p53-deficient cells, alterations that exacerbate the effects of EXO1/FEN1 inhibition and become lethal in this context. Since this sensitivity is dependent on BRCA2 defects, we propose to target EXO1/FEN1 in PARPi-resistant tumors that have lost PARG activity. Moreover, EXO1/FEN1 targeting may be a useful strategy for enhancing the effect of PARG inhibitors in homologous recombination-deficient tumors.
- MeSH
- "flap" endonukleasy genetika metabolismus terapeutické užití MeSH
- enzymy opravy DNA genetika MeSH
- exodeoxyribonukleasy genetika MeSH
- glykosidhydrolasy genetika metabolismus MeSH
- lidé MeSH
- nádorový supresorový protein p53 * genetika metabolismus MeSH
- nádory * farmakoterapie genetika MeSH
- oprava DNA MeSH
- PARP inhibitory farmakologie MeSH
- poškození DNA MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Pancreatic cancer has an incidence that almost matches its mortality. Only a small number of risk factors and 33 susceptibility loci have been identified. so Moreover, the relative rarity of pancreatic cancer poses significant hurdles for research aimed at increasing our knowledge of the genetic mechanisms contributing to the disease. Additionally, the inability to adequately power research questions prevents small monocentric studies from being successful. Several consortia have been established to pursue a better understanding of the genetic architecture of pancreatic cancers. The Pancreatic disease research (PANDoRA) consortium is the largest in Europe. PANDoRA is spread across 12 European countries, Brazil and Japan, bringing together 29 basic and clinical research groups. In the last ten years, PANDoRA has contributed to the discovery of 25 susceptibility loci, a feat that will be instrumental in stratifying the population by risk and optimizing preventive strategies.