Anterior gradient 2 (AGR2) is a dimeric protein disulfide isomerase family member involved in the regulation of protein quality control in the endoplasmic reticulum (ER). Mouse AGR2 deletion increases intestinal inflammation and promotes the development of inflammatory bowel disease (IBD). Although these biological effects are well established, the underlying molecular mechanisms of AGR2 function toward inflammation remain poorly defined. Here, using a protein-protein interaction screen to identify cellular regulators of AGR2 dimerization, we unveiled specific enhancers, including TMED2, and inhibitors of AGR2 dimerization, that control AGR2 functions. We demonstrate that modulation of AGR2 dimer formation, whether enhancing or inhibiting the process, yields pro-inflammatory phenotypes, through either autophagy-dependent processes or secretion of AGR2, respectively. We also demonstrate that in IBD and specifically in Crohn's disease, the levels of AGR2 dimerization modulators are selectively deregulated, and this correlates with severity of disease. Our study demonstrates that AGR2 dimers act as sensors of ER homeostasis which are disrupted upon ER stress and promote the secretion of AGR2 monomers. The latter might represent systemic alarm signals for pro-inflammatory responses.
- MeSH
- endoplazmatické retikulum genetika metabolismus MeSH
- HEK293 buňky MeSH
- homeostáze proteinů * MeSH
- lidé MeSH
- mukoproteiny genetika metabolismus MeSH
- multimerizace proteinu * MeSH
- myši MeSH
- onkogenní proteiny genetika metabolismus MeSH
- stres endoplazmatického retikula * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Anterior gradient protein (AGR) 3 is a highly related homologue of pro-oncogenic AGR2 and belongs to the family of protein disulfide isomerases. Although AGR3 was found in breast, ovary, prostate, and liver cancer, it remains of yet poorly defined function in tumorigenesis. This study aimed to determine AGR3 expression in a cohort of 129 primary breast carcinomas and evaluate the clinical and prognostic significance of AGR3 in these tumors. The immunohistochemical analysis revealed the presence of AGR3 staining to varying degrees in 80% of analyzed specimens. The percentage of AGR3-positive cells significantly correlated with estrogen receptor, progesterone receptor (both P<0.0001) as well as low histological grade (P=0.003), and inversely correlated with the level of Ki-67 expression (P<0.0001). In the whole cohort, AGR3 expression was associated with longer progression-free survival (PFS), whereas AGR3-positive subgroup of low-histological grade tumors showed both significantly longer PFS and overall survival. In conclusion, AGR3 is associated with the level of differentiation, slowly proliferating tumors, and more favorable prognosis of breast cancer patients.
- Publikační typ
- časopisecké články MeSH
B-cell activating factor (BAFF) is an important immune regulator that was recently reported to be secreted by placenta. The aim of the study was to investigate the presence of BAFF in umbilical cord blood, maternal serum, and breast milk in normal and in pre-eclamptic pregnancies. Pairs of maternal serum/umbilical cord blood were obtained from 12 pre-eclamptic and 34 physiological pregnancies. Another cohort of 10 healthy lactating women was established that was followed up for 6 months following delivery to investigate BAFF levels in breast milk. BAFF levels in maternal peripheral blood were significantly higher in physiological pregnancies than in pre-eclamptic pregnancies (p < 0.03). Furthermore, we observed a consistent presence of BAFF in breast milk during the 6-month post-partum period of breastfeeding. In this study, we demonstrate that BAFF levels are significantly lower in maternal peripheral blood in pre-eclamptic pregnancies. We also report the consistent presence of BAFF in breast milk in healthy women. More research into the role of BAFF in pregnancy, and during breastfeeding, is imperative.
- MeSH
- dospělí MeSH
- faktor aktivující B-buňky krev MeSH
- fetální krev metabolismus MeSH
- lidé MeSH
- mateřské mléko metabolismus MeSH
- poporodní období metabolismus MeSH
- preeklampsie krev MeSH
- těhotenství MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- klinické zkoušky MeSH
- práce podpořená grantem MeSH
Epigenetic changes are generally based on the switching of alternative functional or structural states and result in the adaptation of cellular expression patterns during proliferation, differentiation or plastic changes in the adult organism, whereas some epigenetic information can be passed on other generations while other is not. Hence, the principal question is: why is some information reset or resolved during the meiosis process and other is passed from one generation to another, or, in other words: what "adaptation trigger" level initiates transgenerationally transmitted epigenome change? Hereto, we propose a theory which states that stress, or, more specifically, the energy cost of an individual's adaptation to stress, represents a viable candidate for the transgenerational transmission trigger of a given acquired trait. It has been reported recently that the higher lifetime entropy generation of a unit's body mass, the higher the entropy stress level (which is a measure of energy released by a unit's organ mass) and the irreversibility within the organ, resulting in faster organ degradation and consequent health problems for the entire biological system. We therefore suggest a new term: "stress entropic load" will reflect the actual energetic cost of an individual's adaptation and may be used to estimate the probability of inducing transgenerational response once characterized or measured.
- MeSH
- entropie MeSH
- epigeneze genetická * MeSH
- fyziologický stres * MeSH
- lidé MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH