- MeSH
- kortikální kost chirurgie MeSH
- kyretáž * metody MeSH
- lidé MeSH
- nádory kostí * chirurgie patologie sekundární MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND AND OBJECTIVES: Curettage is the removal of a tumor from the bone while preserving the surrounding healthy cortical bone, and is associated with higher rates of local recurrence. To lower these rates, curettage should be combined with local adjuvants, although their use is associated with damage to nearby healthy bone. OBJECTIVE: The purpose of this analysis is to determine the effect of local adjuvants on cortical porcine bone by using micro-computed tomography (micro-CT) along with histological and mechanical examination. METHODS: Local adjuvants were applied to porcine specimens under defined conditions. To assess changes in bone mineral density (BMD), a micro-CT scan was used. The pixel gray values of the volume of interest (VOI) were evaluated per specimen and converted to BMD values. The Vickers hardness test was employed to assess bone hardness (HV). The depth of necrosis was measured histologically using hematoxylin and eosin-stained tissue sections. RESULTS: A noticeable change in BMD was observed on the argon beam coagulation (ABC) sample. Comparable hardness values were measured on samples following electrocautery and ABC, and lowering of bone hardness was obtained in the case of liquid nitrogen. Extensive induced depth of necrosis was registered in the specimen treated with liquid nitrogen. CONCLUSION: This study determined the effect of local adjuvants on cortical bone by using micro-CT along with histological and mechanical examination. Phenolization and liquid nitrogen application caused a decrease in bone hardness. The bone density was affected in the range of single-digit percentage values. Liquid nitrogen induced extensive depth of necrosis with a wide variance of values.
- MeSH
- kortikální kost * patologie diagnostické zobrazování chirurgie účinky léků MeSH
- kostní denzita * účinky léků MeSH
- kyretáž * metody MeSH
- nádory kostí * chirurgie patologie MeSH
- prasata MeSH
- rentgenová mikrotomografie * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Total knee arthroplasty (TKA) with all-polyethylene tibial (APT) components has shown comparable survivorship and clinical outcomes to that with metal-backed tibial (MBT). Although MBT is more frequently implanted, APT equivalents are considered a low-cost variant for elderly patients. A biomechanical analysis was assumed to be suitable to compare the response of the periprosthetic tibia after implantation of TKA NexGen APT and MBT equivalent. METHODS: A standardised load model was used representing the highest load achieved during level walking. The geometry and material models were created using computed tomography data. In the analysis, a material model was created that represents a patient with osteopenia. RESULTS: The equivalent strain distribution in the models of cancellous bone with an APT component showed values above 1000 με in the area below the medial tibial section, with MBT component were primarily localised in the stem tip area. For APT variants, the microstrain values in more than 80% of the volume were in the range from 300 to 1500 με, MBT only in less than 64% of the volume. CONCLUSION: The effect of APT implantation on the periprosthetic tibia was shown as equal or even superior to that of MBT despite maximum strain values occurring in different locations. On the basis of the strain distribution, the state of the bone tissue was analysed to determine whether bone tissue remodelling or remodelling would occur. Following clinical validation, outcomes could eventually modify the implant selection criteria and lead to more frequent implantation of APT components.
PURPOSE: This study aims to compare total knee replacement (TKA) with NexGen All-Poly (APT) and NexGen Metal-Backed (MBT) in terms of implant survivorship, reasons leading to implant failure and functional results of defined age categories. METHODS: A single-centre, retrospective evaluation of 812 patients who underwent knee replacement with NexGen CR between 2005 and 2021, comparing a modern congruent APT component to a modular MBT equivalent component using a similar surgical technique at a notable mean follow-up duration. Implant survival, functional outcomes using the Knee Society Score and range of motion were evaluated and compared in different age categories. RESULTS: Of the 812 NexGen CR TKAs performed at our institution, 410 (50.4%) used APT components and 402 (49.6%) MBT components. The survival rate of NexGen APT was 97.1% and that of NexGen MBT was 93.2% (p = 0.36). Removal of the implant occurred overall in 15 cases, for MBT in ten cases, and for APT in four cases. The FS was proved to be significantly higher when APT components were implanted in younger patients than for MBT (p = 0.005). A similar range of motion between the components was recorded (p = 0.1926). CONCLUSION: Under defined conditions, we measured the clinical results of implants from a single manufacturer implanted in a single department using a similar surgical technique. Considering the limitations, we suggest that all-polyethylene tibial components are equal or even superior to metal-backed ones across the examined age categories.
- MeSH
- kovy MeSH
- lidé MeSH
- polyethylen MeSH
- protézy - design MeSH
- protézy kolene * MeSH
- retrospektivní studie MeSH
- totální endoprotéza kolene * škodlivé účinky MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND AND OBJECTIVE: Total knee arthroplasty (TKA) with modern all-polyethylene tibial (APT) components has shown high long-term survival rates and comparable results to those with metal-backed tibial components. Nevertheless, APT components are primarily recommended for older and low-demand patients. There are no evidence-based biomechanical guidelines for orthopaedic surgeons to determine the appropriate lower age limit for implantation of APT components. A biomechanical analysis was assumed to be suitable to evaluate the clinical results in patients under 70 years. The scope of this study was to determine biomechanically the appropriate lower age limit for implantation of APT components. METHODS: To generate data of the highest possible quality, the geometry of the computational models was created based on computed tomography (CT) images of a representative patient. The cortical bone tissue model distinguishes the change in mechanical properties described in three parts from the tibial cut. The cancellous bone material model has a heterogeneous distribution of mechanical properties. The values used to determine the material properties of the tissues were obtained from measurements of a CT dataset comprising 45 patients. RESULTS: Computational modeling showed that in the majority of the periprosthetic volume, the von Mises strain equivalent ranges from 200 to 2700 με; these strain values induce bone modeling and remodeling. The highest measured deformation value was 2910 με. There was no significant difference in the induced mechanical response between bone models of the 60-year and 70-year age groups, and there was <3% difference from the 65-year age group. CONCLUSIONS: Considering in silico limitations, we suggest that APT components could be conveniently used on a bone with mechanical properties of the examined age categories. Under defined loading conditions, implantation of TKA with APT components is expected to induce modeling and remodeling of the periprosthetic tibia. Following clinical validation, the results of our study could modify the indication criteria of the procedure, and lead to more frequent implantation of all-polyethylene TKA in younger patients.
- MeSH
- analýza metodou konečných prvků MeSH
- biomechanika MeSH
- kovy MeSH
- lidé MeSH
- mechanický stres MeSH
- polyethylen MeSH
- protézy - design MeSH
- protézy kolene * MeSH
- tibie diagnostické zobrazování chirurgie MeSH
- totální endoprotéza kolene * metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH