Electron-deficient chlorine covalently immobilised on an amido group of hyaluronic acid (HA) can be potentially exceptional for applications requiring biodegradable and biocompatible polymers with enhanced antibacterial or antiviral activity. This expectation is supported by the assumption that a small amount of HA chloramide (HACl) is formed in the extracellular matrix under inflammatory conditions by a reaction of endogenous HA with hypochlorous acid (HClO) generated by a myeloperoxidase/H2O2/Cl- system. HACl synthesis optimisation showed significant limitations of HClO as an oxidative agent where only lower degrees of substitution (DS) was achieved. Commercially available oxidative agents based on chlorinated isocyanuric acid were successfully tested, producing the HA chain with almost entirely chlorinated amidic groups. The structure of the final HACl was thoroughly studied using advanced 2-dimensional NMR methodologies and LC/MS. Stability of HACl at different temperatures was monitored over 12 months. Preliminary antimicrobial and antiviral tests demonstrated the potential of HACl for applications in biomedicine.
- MeSH
- antibakteriální látky chemie farmakologie MeSH
- antifungální látky chemie farmakologie MeSH
- antivirové látky chemie farmakologie MeSH
- Bacteria účinky léků MeSH
- chloraminy chemie farmakologie MeSH
- halogenace MeSH
- houby účinky léků MeSH
- kyselina chlorná chemie MeSH
- kyselina hyaluronová chemie MeSH
- viry účinky léků MeSH
- Publikační typ
- časopisecké články MeSH
Macromolecular conjugates of a natural polysaccharide, hyaluronic acid, with diethylenetriaminepentaacetic acid (DTPA)-metal complexes were synthesized and characterized by FTIR, NMR, SEC-MALLS and ICP analysis. Several parameters of the cross-linking reaction as molecular weight of starting HA, temperature, equivalent of DTPA bis-anhydride, concentration of HA, presence of transacylation catalyst DMAP and reaction time were studied. The mechanism for the reaction was suggested and relationship between the molecular weight assigned by SEC-MALLS, reaction parameters and rheological properties of the final cross-linked products were investigated.