Winter barley is an economically important cereal crop grown in higher latitudes and altitudes where low temperatures represent an important environmental constraint limiting crop productivity. In this study changes in proteome of leaves and crowns in a frost tolerant winter barley cv. Luxor in relation to short and long term periods of cold followed by a brief frost treatment were studied in order to disclose proteins responsible for the cold hardening process in distinct plant tissues. The mentioned changes have been monitored using two dimensional difference gel electrophoresis (2D-DIGE) with subsequent peptide-mapping protein identification. Regarding approximately 600-700 distinct protein spots detected on 2D gels, there has been found at least a two-fold change after exposure to low temperatures in about 10% of proteins in leaves and 13% of proteins in crowns. Protein and nitrogen metabolic processes have been influenced by low temperature to a similar extent in both tissues while catabolism, carbohydrate metabolism and proteins involved in stress response have been more affected in crowns than in leaves. The range of changes in protein abundance was generally higher in leaves and chloroplast proteins were frequently affected which suggests a priority to protect photosynthetic apparatus. Overall, our data proved existence of slightly different response strategies to low temperature stress in crowns and leaves, i.e., tissues with different biological role. Moreover, there have been found several proteins with large increase in accumulation, e.g., 33 kDa oxygen evolving protein of photosystem II in leaves and "enhanced disease susceptibility 1" in crowns; these proteins might have potential to indicate an enhanced level of frost tolerance in barley.
- Publikační typ
- časopisecké články MeSH
Enzymy jsou jako biokatalyzátory s prospěchem využívány v mnoha průmyslových odvětvích. Použití enzymových technologií je omezeno nízkou stabilitou enzymů při technologických výrobních procesech. Na enzymy jsou kladeny vysoké nároky z hlediska jejich stability (pn skladováni teplotní a v rozpouštědlech), katalytické aktivity a specifity. Často jsou potřeba enzymy s novými vlastnostmi Nejdéle používaným způsobem zvýšení stability enzymů je imobilizace, dále lze použít stabilizační činidla nebo kovalentní modifikace. Vlastnosti enzymů lze také částečně ovlivnit změnou podmínek, v nichž probíhá reakce, může to být např. změna rozpouštědla či tlaku. Novějšími metodami umožňujícími získat enzymy s novými vlastnostmi jsou rekombinantní techniky využívající postupy racionální nebo kombinatorické.
Enzymes as biocatalysts are used with benefit in many industrial processes. The use of enzyme technology is limited by the low stability of enzymes in technological production processes. The technological processes are demanding in terms of enzyme stability (during storage, temperature stabiirty and stability in orgnic solvents), catalytic activity and specificity. There are often needs for enzymes with new properties. The longest used way to enhance the stability of the enzyme is immobilization, also the stabilizing agents can be used, or covalent modifications. Properties of enzymes may also be partially affected by changing conditions in which the reaction takes place, a solvent or pressure can be changed for example. Newer methods which allow production of enzymes with new properties are recombinant techniques using rational and combinatorial methods.