BACKGROUND: MicroRNAs (miRNAs) are small RNAs that regulate gene expression by targeting mRNA. It was proved that some miRNAs are significantly deregulated in rheumatoid arthritis (RA). MicroRNA-125b negatively regulates expression of TNF-α, which plays a crucial role in RA pathogenesis. The aim of this study was to determine the treatment outcome of patients with early RA based on the expression of circulating and cellular miR-125b. METHODS: Total RNA was isolated from the plasma and peripheral blood mononuclear cells (PBMCs) of 58 patients with early RA before and three months after treatment initiation and of 54 age- and sex-matched healthy controls (HC). The expression of miR-125b was measured by TaqMan quantitative PCR. The treatment responders were defined as patients achieving remission or low disease activity (28-joint count disease activity score (DAS28) <3.2). Receiver operating characteristic (ROC) curve and stepwise backward multivariable logistic regression analyses of miR-125b expression were used to predict the disease outcome at three and six months after initiation of treatment. RESULTS: The expression of miR-125b in the PBMCs and plasma of treatment-naïve early RA patients was significantly lower than that of HC and increased significantly after three months of treatment, particularly in responders. However, only the cellular expression of miR-125b was inversely correlated with disease activity. MiR-125b expression in PBMCs was higher in responders than in non-responders after three months (p = 0.042). Using ROC analysis, the cellular expression of miR-125b, but not the disease activity at baseline, predicted the treatment response after three months of therapy (area under the curve 0.652 (95 % CI 0.510 to 0.793); p = 0.048). CONCLUSION: The expression of miR-125b in PBMCs of treatment-naïve patients may present a novel biomarker for monitoring the treatment outcome during the early phase of RA.
- MeSH
- antirevmatika terapeutické užití MeSH
- biologické markery analýza MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mikro RNA analýza MeSH
- plocha pod křivkou MeSH
- revmatoidní artritida krev farmakoterapie genetika MeSH
- ROC křivka MeSH
- senioři MeSH
- výsledek terapie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Mouse polyomavirus-like particles (MPyV-VLPs) carrying inside a fragment of the Bcr-Abl hybrid protein containing the epitope of chronic myeloid leukemia fusion region were prepared. A sequence encoding 171 amino acids covering Bcr-Abl breakpoint was fused to the C-terminal part of VP3 minor protein connecting it to the VP1 capsomeres. Chimeric particles, the Bcr-Abl VLPs, were tested for their ability to induce Bcr-Abl specific immune response in mice after their intranasal (i.n.) or intraperitoneal (i.p.) administration without any other adjuvants. Bcr-Abl VLPs induced strong anti-VP1 immune response in both i.n. and i.p. immunized mice. As expected, neither IgG nor IgM anti-Bcr-Abl specific antibodies were detected in the sera of immunized animals. Surprisingly, no specific CTL (cytotoxic T-lymphocyte) activity was proved using two different methods (in vitro cytotoxicity assay with CFSE-labeled target cells and highly sensitive cytotoxicity assay using MHC class I Bcr-Abl specific pentamers). In addition, no proliferative response of T-cells of i.n. immunized mice after in vitro restimulation with antigen-pulsed bone marrow-derived dendritic cells was observed. Taken together, Bcr-Abl breakpoint epitopes appeared to be weak immunogens and even MPyV-VLPs did not provide sufficient adjuvant ability to support induction of immune responses specific to Bcr-Abl fusion zone epitope.
- MeSH
- antigeny virové imunologie MeSH
- bcr-abl fúzní proteiny imunologie MeSH
- chronická myeloidní leukemie imunologie MeSH
- cytotoxicita imunologická MeSH
- epitopy imunologie MeSH
- fluorescenční protilátková technika MeSH
- imunoelektronová mikroskopie MeSH
- lidé MeSH
- myši MeSH
- Polyomavirus imunologie MeSH
- rekombinantní proteiny imunologie MeSH
- western blotting MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- práce podpořená grantem MeSH