Although human nucleoporin Tpr is frequently deregulated in cancer, its roles are poorly understood. Here we show that Tpr depletion generates transcription-dependent replication stress, DNA breaks, and genomic instability. DNA fiber assays and electron microscopy visualization of replication intermediates show that Tpr deficient cells exhibit slow and asymmetric replication forks under replication stress. Tpr deficiency evokes enhanced levels of DNA-RNA hybrids. Additionally, complementary proteomic strategies identify a network of Tpr-interacting proteins mediating RNA processing, such as MATR3 and SUGP2, and functional experiments confirm that their depletion trigger cellular phenotypes shared with Tpr deficiency. Mechanistic studies reveal the interplay of Tpr with GANP, a component of the TREX-2 complex. The Tpr-GANP interaction is supported by their shared protein level alterations in a cohort of ovarian carcinomas. Our results reveal links between nucleoporins, DNA transcription and replication, and the existence of a network physically connecting replication forks with transcription, splicing, and mRNA export machinery.
- MeSH
- acetyltransferasy genetika metabolismus MeSH
- HeLa buňky MeSH
- intracelulární signální peptidy a proteiny genetika metabolismus MeSH
- komplex proteinů jaderného póru genetika metabolismus MeSH
- lidé MeSH
- mapy interakcí proteinů MeSH
- nádory genetika MeSH
- nestabilita genomu MeSH
- poškození DNA MeSH
- protoonkogenní proteiny genetika metabolismus MeSH
- replikace DNA * MeSH
- transport RNA MeSH
- viabilita buněk MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Cellular senescence, an irreversible proliferation arrest evoked by stresses such as oncogene activation, telomere dysfunction, or diverse genotoxic insults, has been implicated in tumor suppression and aging. Primary human fibroblasts undergoing oncogene-induced or replicative senescence are known to form senescence-associated heterochromatin foci (SAHF), nuclear DNA domains stained densely by DAPI and enriched for histone modifications including lysine9-trimethylated histone H3. While cellular senescence occurs also in premalignant human lesions, it is unclear how universal is SAHF formation among various cell types, under diverse stresses, and whether SAHF occur in vivo. Here, we report that human primary fibroblasts (BJ and MRC-5) and primary keratinocytes undergoing replicative senescence, or premature senescence induced by oncogenic H-Ras, diverse chemotherapeutics and bacterial cytolethal distending toxin, show differential capacity to form SAHF. Whereas all tested cell types formed SAHF in response to activated H-Ras, only MRC-5, but not BJ fibroblasts or keratinocytes, formed SAHF under senescence induced by etoposide, doxorubicin, hydroxyurea, bacterial intoxication or telomere attrition. In addition, DAPI-defined SAHF were detected on paraffin sections of Ras-transformed cultured fibroblasts, but not human lesions at various stages of tumorigenesis. Overall, our results indicate that unlike the widely present DNA damage response marker γH2AX, SAHF is not a common feature of cellular senescence. Whereas SAHF formation is shared by diverse cultured cell types under oncogenic stress, SAHF are cell-type-restricted under genotoxin-induced and replicative senescence. Furthermore, while the DNA/DAPI-defined SAHF formation in cultured cells parallels enhanced expression of p16(ink4a) , such 'prototypic' SAHF are not observed in tissues, including premalignant lesions, irrespective of enhanced p16(ink4a) and other features of cellular senescence.
- MeSH
- bakteriální toxiny farmakologie MeSH
- buněčné linie MeSH
- geny ras MeSH
- heterochromatin chemie MeSH
- inhibitor p16 cyklin-dependentní kinasy genetika metabolismus fyziologie MeSH
- lidé MeSH
- poškození DNA MeSH
- proliferace buněk MeSH
- stárnutí buněk účinky léků genetika fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH