Extracellular vesicles (EVs) are lipid-enclosed structures that facilitate intercellular communication by transferring cargo between cells. Although predominantly studied in mammals, extracellular vesicles are ubiquitous across metazoans, and thus research in non-mammalian models is critical for fully elucidating extracellular vesicles biology. Recent advances demonstrate that extracellular vesicles mediate diverse physiological processes in non-mammalian vertebrates, including fish, amphibians, and reptiles. Piscine extracellular vesicles promote fin regeneration in zebrafish and carry heat shock proteins regulated by stress. Frog extracellular vesicles containing microRNAs modulate angiogenesis, while turtle extracellular vesicles coordinate reproductive functions. Venom from snakes contains extracellular vesicles that mirror the whole venom composition and interact with mammalian cells. Invertebrates also possess extracellular vesicles involved in immunity, development, and pathogenesis. Molluscan extracellular vesicles participate in shell formation and host interactions. Arthropod models, including Drosophila, genetically dissect conserved pathways controlling extracellular vesicles biogenesis and signalling. Nematode extracellular vesicles regulate larval development, animal communication, and ageing via conserved extracellular vesicles proteins. Ancient metazoan lineages utilise extracellular vesicles as well, with cnidarian extracellular vesicles regulating immunity and regeneration. Ultimately, expanding extracellular vesicles research beyond typical biomedical models to encompass phylogenetic diversity provides an unparalleled perspective on the conserved versus specialised aspects of metazoan extracellular vesicles roles over ∼500 million years. With a primary focus on the literature from the past 5 years, this review aims to reveal fundamental insights into EV-mediated intercellular communication mechanisms shaping animal physiology.
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Glycodendrimers (Glyco-DDMs) represent a rapidly growing class of nanoparticles with promising properties for biomedical applications but concerns regarding the impact on human health and environment are still justified. Here we report, for the first time, the comparative study of in vivo developmental toxicity of carbosilane Glyco-DDMs and their cytotoxicity in vitro. Carbosilane Glyco-DDMs (generation 1-3) containing 4, 8, and 16 β-d-glucopyranosyl units at the periphery (DDM1Glu, DDM2Glu, and DDM3Glu) were synthesized and characterized by 1H, 13C and 29Si NMR, mass spectrometry, dynamic light scattering, atomic force microscopy (AFM), and computer modeling. In vitro cytotoxicity assay (MTT) of DDM1-3Glu was performed on three different rodent cell lines (Cricetulus griseus) - B14 (ATCC, CCL-14.1), BRL 3A (ATCC, CRL-1442), and NRK 52E (ATCC, CRL-1571). Overall, very low cytotoxicity was observed with calculated IC50 in mM range with slight difference between each cell line and DDM generation investigated. Modified fish embryo test (FET) was further used for DDM3Glu developmental toxicity testing on zebrafish (Danio rerio) embryos. While seemingly harmless to intact embryos, adverse effects of DDMs on the embryonic development become evident after chorion removal (LD50=2.78 μM at 96 hpe). We summarized that the modified FET test showed a two to three orders of magnitude difference between the in vitro cytotoxicity and in vivo developmental toxicity of DDM3Glu. While, in general, the Glyco-DDMs show great promises as efficient vectors in targeted drug delivery or as therapeutic molecules itself, we suggest that their developmental toxicity should be thoroughly investigated to exclude safety risks associated with their potential biomedical use.
- MeSH
- buněčné linie MeSH
- Cricetulus MeSH
- dánio pruhované * embryologie MeSH
- dendrimery chemie toxicita MeSH
- embryo nesavčí účinky léků MeSH
- embryonální vývoj účinky léků MeSH
- glukosa chemie MeSH
- LD50 MeSH
- lidé MeSH
- molekulární modely MeSH
- povrchové vlastnosti MeSH
- silany chemie toxicita MeSH
- teratogeny chemie toxicita MeSH
- testy toxicity MeSH
- viabilita buněk účinky léků MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Animals sense light primarily by an opsin-based photopigment present in a photoreceptor cell. Cnidaria are arguably the most basal phylum containing a well-developed visual system. The evolutionary history of opsins in the animal kingdom has not yet been resolved. Here, we study the evolution of animal opsins by genome-wide analysis of the cubozoan jellyfish Tripedalia cystophora, a cnidarian possessing complex lens-containing eyes and minor photoreceptors. A large number of opsin genes with distinct tissue- and stage-specific expression were identified. Our phylogenetic analysis unequivocally classifies cubozoan opsins as a sister group to c-opsins and documents lineage-specific expansion of the opsin gene repertoire in the cubozoan genome. Functional analyses provided evidence for the use of the Gs-cAMP signaling pathway in a small set of cubozoan opsins, indicating the possibility that the majority of other cubozoan opsins signal via distinct pathways. Additionally, these tests uncovered subtle differences among individual opsins, suggesting possible fine-tuning for specific photoreceptor tasks. Based on phylogenetic, expression and biochemical analysis we propose that rapid lineage- and species-specific duplications of the intron-less opsin genes and their subsequent functional diversification promoted evolution of a large repertoire of both visual and extraocular photoreceptors in cubozoans.
- MeSH
- AMP cyklický metabolismus MeSH
- biologická evoluce * MeSH
- Cubozoa genetika metabolismus MeSH
- exprese genu MeSH
- fotoreceptory metabolismus MeSH
- fylogeneze MeSH
- genom * MeSH
- genomika metody MeSH
- mapování chromozomů MeSH
- messenger RNA genetika MeSH
- multigenová rodina MeSH
- opsiny genetika metabolismus MeSH
- proteiny vázající GTP metabolismus MeSH
- signální transdukce MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH