Prion diseases have been observed to deregulate the transcription of erythroid genes, and prion protein knockout mice have demonstrated a diminished response to experimental anemia. To investigate the role of the cellular prion protein (PrP(C)) in erythropoiesis, we studied the protein's expression on mouse erythroid precursors in vivo and utilized an in vitro model of the erythroid differentiation of murine erythroleukemia cells (MEL) to evaluate the effect of silencing PrP(C) through RNA interference.The expression of PrP(C) and selected differentiation markers was analyzed by quantitative multicolor flow cytometry, western blot analysis and quantitative RT-PCR. The silencing of PrP(C) expression in MEL cells was achieved by expression of shRNAmir from an integrated retroviral vector genome. The initial upregulation of PrP(C) expression in differentiating erythroid precursors was detected both in vivo and in vitro, suggesting PrP(C)'s importance to the early stages of differentiation. The upregulation was highest on early erythroblasts (16200±3700 PrP(C) / cell) and was followed by the gradual decrease of PrP(C) level with the precursor's maturation reaching 470±230 PrP(C) / cell on most mature CD71(-)Ter119(+) small precursors. Interestingly, the downregulation of PrP(C) protein with maturation of MEL cells was not accompanied by the decrease of PrP mRNA. The stable expression of anti-Prnp shRNAmir in MEL cells led to the efficient (>80%) silencing of PrP(C) levels. Cell growth, viability, hemoglobin production and the transcription of selected differentiation markers were not affected by the downregulation of PrP(C).In conclusion, the regulation of PrP(C) expression in differentiating MEL cells mimics the pattern detected on mouse erythroid precursors in vivo. Decrease of PrP(C) protein expression during MEL cell maturation is not regulated on transcriptional level. The efficient silencing of PrP(C) levels, despite not affecting MEL cell differentiation, enables created MEL lines to be used for studies of PrP(C) cellular function.
- MeSH
- akutní erytroblastická leukemie genetika patologie MeSH
- buněčná diferenciace genetika MeSH
- buňky kostní dřeně cytologie MeSH
- down regulace MeSH
- erytroidní prekurzorové buňky cytologie metabolismus MeSH
- genetické vektory genetika MeSH
- hemoglobiny biosyntéza MeSH
- malá interferující RNA genetika MeSH
- messenger RNA genetika metabolismus MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- priony genetika MeSH
- regulace genové exprese u nádorů MeSH
- Retroviridae genetika MeSH
- RNA interference MeSH
- slezina cytologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Recent transmissions of variant Creutzfeldt-Jakob disease by blood transfusion emphasize the need for the development of prion screening tests. The detection of prions in blood is complicated by the presence of poorly characterized cellular prion protein (PrP(C) ) in both plasma and blood cells. According to published studies, most of PrP(C) in blood cells resides in platelets (PLTs) and white blood cells. STUDY DESIGN AND METHODS: To clarify conflicting reports about the quantity of PrP(C) associated with human red blood cells (RBCs), quantitative flow cytometry, Western blot (WB), and enzyme-linked immunosorbent assay (ELISA) were used to measure protein levels in healthy donors. RESULTS: RBCs expressed 290 ± 140 molecules of PrP(C) per cell, assuming equimolar binding of monoclonal antibody (MoAb) 6H4 to PrP(C). Binding of alternate PrP(C) MoAbs, FH11 and 3F4, was substantially lower. WB estimated the level of PrP(C) per cell on RBCs to be just four times lower than in PLTs. A similar level of PrP(C) was detected using ELISA. The weak binding of commonly used MoAb 3F4 was not caused by PrP(C) conformation, truncation, or glycosylation, suggesting a covalent modification, likely glycation, of the 3F4 epitope. CONCLUSIONS: Taken together, human RBCs express low but significant amounts of PrP(C) /cell, which makes them, due to high RBC numbers, major contributors to the pool of cell-associated PrP(C) in blood. Previous reports utilizing MoAb 3F4 may have underestimated the amount of PrP(C) in RBCs. Likewise, screening tests for the presence of the abnormal prion protein in blood may be difficult if the abnormal protein is modified similar to RBC PrP(C).
- MeSH
- Creutzfeldtova-Jakobova nemoc metabolismus prevence a kontrola přenos MeSH
- ELISA MeSH
- epitopy imunologie MeSH
- erytrocytární membrána metabolismus MeSH
- erytrocyty metabolismus MeSH
- glykosylace MeSH
- krevní transfuze MeSH
- lidé MeSH
- monoklonální protilátky imunologie MeSH
- plošný screening metody MeSH
- potransfuzní reakce MeSH
- PrPC proteiny imunologie metabolismus MeSH
- průtoková cytometrie MeSH
- western blotting MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH