Inhalation drug administration is increasingly used for local pharmacotherapy of lung disorders and as an alternative route for systemic drug delivery. Modern inhalation powder systems aim to target drug deposition in the required site of action. Large porous particles (LPP), characterized by an aerodynamic diameter over 5 μm, density below 0.4 g/cm3, and the ability to avoid protective lung mechanisms, come to the forefront of the research. They are mostly prepared by spray techniques such as spray drying or lyophilization using pore-forming substances (porogens). These substances could be gaseous, solid, or liquid, and their selection depends on their polarity, solubility, and mutual compatibility with the carrier material and the drug. According to the pores-forming mechanism, porogens can be divided into groups, such as osmogens, extractable porogens, and porogens developing gases during decomposition. This review characterizes modern trends in the formulation of solid microparticles for lung delivery; describes the mechanisms of action of the most often used porogens, discusses their applicability in various formulation methods, emphasizes spray techniques; and documents discussed topics by examples from experimental studies.
- MeSH
- aplikace inhalační MeSH
- farmaceutická chemie metody MeSH
- lékové transportní systémy * metody MeSH
- lidé MeSH
- plíce * metabolismus účinky léků MeSH
- poréznost MeSH
- prášky, zásypy, pudry MeSH
- příprava léků metody MeSH
- velikost částic * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Inhalační podání suchých práškových částic je využívanou aplikační cestou pro dosažení lokálního i systémového působení léčiv. U plicních onemocnění je žádoucí depozice léčiv v místě účinku. Pro efektivní léčbu jsou tak zásadní parametry inhalovaných částic, a to především jejich velikost, tvar nebo aerosolizační parametry. Vhodných parametrů je možné dosáhnout volbou metody přípravy nebo pomocných látek (nosičů, porogenů nebo aerosolizačních činidel). Cílem experimentu byla příprava jedenácti šarží práškových směsí sprejovým sušením, které se lišily použitým nosičem, množstvím leucinu či porogenu. Cílem bylo optimalizovat složení pro navázání léčiva s ohledem na požadavky pro plicní podání. Připravené částice byly zhodnoceny z hlediska morfologie, tokových vlastností, pórovitosti, geometrického i aerodynamického průměru. Bylo zjištěno, že se zvyšující se koncentrací leucinu se sypná hustota částic snižovala a zároveň rostla hodnota FPF. Stejně tak docházelo i ke snižování MMAD. Jako vhodná se jevila šarže obsahující 15 % leucinu. Při stanovení optimální koncentrace porogenu (hydrogenuhličitan amonný) u manitolových částic dosahovala nejlepších výsledků šarže s jeho 1% zastoupením, vzhledem k vyhovující velikosti částic oproti ostatním šaržím (MMAD 5,92 ± 1,32 μm), vhodné pórovitosti a obecně přijatelné morfologii částic. Za účelem formulace částic s navázaným léčivem by tedy bylo vhodné snížit aerodynamický průměr částic např. úpravou procesních parametrů sprejového sušení.
Inhalation administration of dry powder particles is a common application route to achieve local and systemic drug effects. For pulmonary diseases, the deposition of drugs at the site of action is desirable. Thus, the parameters of the inhaled particles, especially their size, shape, or aerosolization, are essential for effective treatment. Suitable parameters can be achieved by choice of preparation method or excipients (carriers, porogens, or aerosolizing agents). This experiment aimed to prepare 11 batches of powder mixtures by spray drying, which differed in the carrier used and the amount of leucine or porogen. The aim was to optimize the formulation for drug binding concerning the requirements for pulmonary administration. The prepared particles were evaluated in terms of morphology, flow properties, porosity, and geometric and aerodynamic diameter. It was found that with increasing concentration of leucine, the bulk density of the particles decreased while the FPF value increased. Similarly, there was a decrease in MMAD. The batch containing 15% leucine was the most suitable. In determining the optimum porogen concentration for mannitol particles, the batch with its 1% gave the best results due to its adequate particle size compared to the other batches (MMAD 5.92 ± 1.32 μm), suitable porosity, and particle morphology. Thus, to formulate drug-loaded particles, it would be advisable to reduce the aerodynamic diameter of the particles, e.g., by spray drying process parameters.
Formulace mikročástic složených ze směsi nosičů představuje inovativní přístup pro podání léčiv do plic ve formě suchého prášku. Použité nosiče mohou významně ovlivnit výsledné vlastnosti mikročástic, jako je velikost, tvar, povrch, hygroskopicita či agregace, a tím zlepšit aerosolizaci léčiv po jejich inhalaci. Zmíněné vlastnosti jsou klíčové pro efektivní pulmonální terapii. Kombinací nosičů povahy sacharidů a gelujících látek je výhodné pro řízené uvolňování léčiva. Cílem experimentální práce bylo sprejovým sušením připravit a následně zhodnotit několik šarží mikročástic složených z nosičů na bázi cukrů (manitol, maltodextrin, dextran) a gelujících sacharidů (chitosan, chondroitin-sulfát) a vybrat vhodnou kombinaci pro navazující experimentální práce zaměřené na inkorporaci léčiva do mikročásticové matrice. Nejvhodnější parametry vykazovaly šarže, jejichž aerodynamický průměr se blížil 5 μm, a to částice připravené z kombinace manitolu a dextranu, chitosanu a chondroitinu nebo maltodextrinu a chondoitinu. U těchto šarží byla také naměřena nejvyšší hodnota frakce jemných částic (> 43 %). Z pohledu zpracovatelnosti je vhodná šarže se zastoupením maltodextrinu a chondroitinu vzhledem k nižší viskozitě vstupní disperze a pravidelnějšímu tvaru finálních mikročástic.
The formulation of microparticles composed of a mixture of carriers represents an innovative approach for lung drug delivery of dry powder. The carriers used can significantly influence the properties of the microparticles, such as size, shape, surface area, hygroscopicity, or aggregation, thus improving the aerosolization of the drugs after inhalation. The properties mentioned above are crucial for effective pulmonary therapy. The combination of carriers of a carbohydrate nature and gelling agents is advantageous for controlled drug release. The experimental work aimed to prepare by spray drying and subsequently evaluate ten batches of microparticles composed of sugar-based carriers (mannitol, maltodextrin, dextran) and gelling polymers (chitosan, chondroitin sulfate) and to select a suitable combination for follow-up experimental work aimed at drug incorporation into the microparticle matrix. The most suitable parameters were exhibited by batches whose aerodynamic diameter was close to 5 μm, particles prepared from a combination of mannitol and dextran, chitosan and chondroitin, or maltodextrin and chondroitin. These batches also showed the highest fine particle fraction value (> 43%). From a processability point of view, the batch with maltodextrin and chondroitin is preferable due to the lower viscosity of the dispersion and the more regular shape of the final microparticles.
- MeSH
- aplikace inhalační MeSH
- farmaceutický výzkum MeSH
- lidé MeSH
- mikroplasty MeSH
- nosiče léků * MeSH
- sprejové sušení MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- práce podpořená grantem MeSH