A series of novel C4-C7-tethered biscoumarin derivatives (12a-e) linked through piperazine moiety was designed, synthesized, and evaluated biological/therapeutic potential. Biscoumarin 12d was found to be the most effective inhibitor of both acetylcholinesterase (AChE, IC50 = 6.30 μM) and butyrylcholinesterase (BChE, IC50 = 49 μM). Detailed molecular modelling studies compared the accommodation of ensaculin (well-established coumarin derivative tested in phase I of clinical trials) and 12d in the human recombinant AChE (hAChE) active site. The ability of novel compounds to cross the blood-brain barrier (BBB) was predicted with a positive outcome for compound 12e. The antiproliferative effects of newly synthesized biscoumarin derivatives were tested in vitro on human lung carcinoma cell line (A549) and normal colon fibroblast cell line (CCD-18Co). The effect of derivatives on cell proliferation was evaluated by MTT assay, quantification of cell numbers and viability, colony-forming assay, analysis of cell cycle distribution and mitotic activity. Intracellular localization of used derivatives in A549 cells was confirmed by confocal microscopy. Derivatives 12d and 12e showed significant antiproliferative activity in A549 cancer cells without a significant effect on normal CCD-18Co cells. The inhibition of hAChE/human recombinant BChE (hBChE), the antiproliferative activity on cancer cells, and the ability to cross the BBB suggest the high potential of biscoumarin derivatives. Beside the treatment of cancer, 12e might be applicable against disorders such as schizophrenia, and 12d could serve future development as therapeutic agents in the prevention and/or treatment of Alzheimer's disease.
- MeSH
- aktivace enzymů účinky léků MeSH
- Alzheimerova nemoc farmakoterapie MeSH
- antitumorózní látky chemická syntéza chemie farmakologie MeSH
- buněčný cyklus účinky léků MeSH
- buňky A549 MeSH
- cholinesterasové inhibitory chemická syntéza chemie farmakologie MeSH
- hematoencefalická bariéra účinky léků metabolismus MeSH
- kumariny chemická syntéza chemie farmakologie MeSH
- lidé MeSH
- molekulární modely * MeSH
- molekulární struktura MeSH
- techniky syntetické chemie * MeSH
- viabilita buněk účinky léků MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
A549 human lung carcinoma cell lines were treated with a series of new drugs with both tacrine and coumarin pharmacophores (derivatives 1a-2c) in order to test the compounds' ability to inhibit both cancer cell growth and topoisomerase I and II activity. The ability of human topoisomerase I (hTOPI) and II to relax supercoiled plasmid DNA in the presence of various concentrations of the tacrine-coumarin hybrid molecules was studied with agarose gel electrophoresis. The biological activities of the derivatives were studied using MTT assays, clonogenic assays, cell cycle analysis and quantification of cell number and viability. The content and localization of the derivatives in the cells were analysed using flow cytometry and confocal microscopy. All of the studied compounds were found to have inhibited topoisomerase I activity completely. The effect of the tacrine-coumarin hybrid compounds on cancer cells is likely to be dependent on the length of the chain between the tacrine and coumarin moieties (1c, 1d = tacrine-(CH2)8-9-coumarin). The most active of the tested compounds, derivatives 1c and 1d, both display longer chains.
- MeSH
- antitumorózní látky chemie farmakologie MeSH
- buňky A549 MeSH
- DNA-topoisomerasy I metabolismus MeSH
- DNA-topoisomerasy typu II metabolismus MeSH
- inhibitory topoisomerasy I chemie farmakologie MeSH
- inhibitory topoisomerasy II chemie farmakologie MeSH
- kumariny chemie farmakologie MeSH
- léky antitumorózní - screeningové testy MeSH
- lidé MeSH
- molekulární struktura MeSH
- nádorové buňky kultivované MeSH
- proliferace buněk účinky léků MeSH
- proteiny vázající poly-ADP-ribosu antagonisté a inhibitory metabolismus MeSH
- takrin chemie farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
A series of new 3,6,9-trisubstituted acridine derivatives with fluorine substituents on phenyl ring were synthesized and their interaction with calf thymus DNA was investigated. Analysis using UV-Vis absorbance spectra provided valuable information about the formation of the acridine-DNA complex. In addition, compounds 8b and 8d were found to display an increased binding affinity (K = 2.32 and 2.28 × 106 M-1, respectively). Topo I/II inhibition mode assays were also performed, and the results verify that the novel compounds display topoisomerase I and II inhibitory activity; compounds 8a, 8b and 8c completely inhibited topoisomerase I activity at a concentration of 60 × 10-6 M, but only compound 8d showed partial ability to inhibit topoisomerase II at concentrations of 30 and 50 × 10-6 M. The ability of the derivatives to impair cell proliferation was tested through an analysis of cell cycle distribution, quantification of cell number, viability studies, metabolic activity measurement and clonogenic assay. The content and localization of the derivatives in cells were analyzed using flow cytometry and fluorescence microscopy. The compounds 8b and 8d altered the physiochemical properties and improved antiproliferative activity in A549 human lung carcinoma cells (compound 8d displayed the highest level of activity, 4.25 × 10-6 M, after 48 h).
- MeSH
- akridiny chemická syntéza chemie farmakologie MeSH
- antitumorózní látky chemická syntéza chemie farmakologie MeSH
- buňky A549 MeSH
- DNA-topoisomerasy I metabolismus MeSH
- DNA-topoisomerasy typu II metabolismus MeSH
- DNA účinky léků MeSH
- halogenace MeSH
- inhibitory topoisomerasy I chemická syntéza chemie farmakologie MeSH
- inhibitory topoisomerasy II chemická syntéza chemie farmakologie MeSH
- léky antitumorózní - screeningové testy MeSH
- lidé MeSH
- molekulární struktura MeSH
- proliferace buněk účinky léků MeSH
- skot MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Publikační typ
- abstrakt z konference MeSH
Labelling of DNA in replicating cells using 5-bromo-2 ́-deoxyuridine (BrdU) is widely used, however the rapid clearance and metabolisation of BrdU in the living organism is a critical issue. Although the pharmacokinetic of BrdU in experimental animals is empirically approximated, the exact time-curve remains unknown. Here we present novel method for estimation of the BrdU content in the blood serum. The application is based on the in vitro cocultivation of tumour cells with the examined serum and the subsequent quantification of the incorporated BrdU in the DNA using flow cytometry analysis. Our results demonstrate that this approach can quantify the BrdU concentration in serum at 1 micromol.dm(-3) and might represent an attractive alternative to conventional chromatographic analysis. The employment of tumour cells as "detectors" of the BrdU content in serum provides an advantage over high pressure liquid chromatography (HPLC), as this approach allows us to approximate not only the concentration of BrdU, but also to determine, whether BrdU is present in the blood serum in effective concentration to reliable label all cells undergoing the S-phase of the cell cycle. The presented application might be a helpful tool for studies on pharmacokinetics of BrdU or other thymidine analogues when testing various administration routes or protocols.
- MeSH
- antimetabolity krev MeSH
- bromodeoxyuridin krev MeSH
- buněčná adheze MeSH
- buněčné linie MeSH
- injekce intraperitoneální MeSH
- krysa rodu rattus MeSH
- lidé MeSH
- proliferace buněk účinky léků MeSH
- průtoková cytometrie MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH