BACKGROUND: Megalin (LRP2 receptor) mediates the endocytosis of radiolabeled peptides into proximal tubular kidney cells, which may cause nephrotoxicity due to the accumulation of a radioactive tracer. The study aimed to develop a cellular model of human kidney HK2 cells with LRP2 knockout (KO) using CRISPR/Cas9 technique. This model was employed for the determination of the megalin-mediated accumulation of 68Ga- and 99mTc-labeled 15-mer peptide developed to target the vascular endothelial growth factor (VEGF) receptor in oncology radiodiagnostics. RESULTS: The gene editing in the LRP2 KO model was verified by testing two well-known megalin ligands when higher viability of KO cells was observed after gentamicin treatment at cytotoxic concentrations and lower FITC-albumin internalization by the KO cells was detected in accumulation studies. Fluorescent-activated cell sorting was used to separate genetically modified LRP2 KO cell subpopulations. Moreover, flow cytometry with a specific antibody against megalin confirmed LRP2 knockout. The verified KO model identified both 68Ga- and 99mTc-radiolabeled 15-mer peptides as megalin ligands in accumulation studies. We found that both radiolabeled 15-mers enter LRP2 KO HK2 cells to a lesser extent compared to parent cells. Differences in megalin-mediated cellular uptake depending on the radiolabeling were not observed. Using biomolecular docking, the interaction site of the 15-mer with megalin was also described. CONCLUSION: The CRISPR/Cas9 knockout of LRP2 in human kidney HK2 cells is an effective approach for the determination of radiopeptide internalization mediated by megalin. This in vitro method provided direct molecular evidence for the cellular uptake of radiolabeled anti-VEGFR 15-mer peptides via megalin.
- Publikační typ
- časopisecké články MeSH
Apart from the SARS-CoV-2 virus, tuberculosis remains the leading cause of death from a single infectious agent according to the World Health Organization. As part of our long-term research, we prepared a series of hybrid compounds combining pyrazinamide, a first-line antitubercular agent, and 4-aminosalicylic acid (PAS), a second-line agent. Compound 11 was found to be the most potent, with a broad spectrum of antimycobacterial activity and selectivity toward mycobacterial strains over other pathogens. It also retained its in vitro activity against multiple-drug-resistant mycobacterial strains. Several structural modifications were attempted to improve the in vitro antimycobacterial activity. The δ-lactone form of compound 11 (11') had more potent in vitro antimycobacterial activity against Mycobacterium tuberculosis H37Rv. Compound 11 was advanced for in vivo studies, where it was proved to be nontoxic in Galleria mellonella and zebrafish models, and it reduced the number of colony-forming units in spleens in the murine model of tuberculosis. Biochemical studies showed that compound 11 targets mycobacterial dihydrofolate reductases (DHFR). An in silico docking study combined with molecular dynamics identified a viable binding mode of compound 11 in mycobacterial DHFR. The lactone 11' opens in human plasma to its parent compound 11 (t1/2 = 21.4 min). Compound 11 was metabolized by human liver fraction by slow hydrolysis of the amidic bond (t1/2 = 187 min) to yield PAS and its starting 6-chloropyrazinoic acid. The long t1/2 of compound 11 overcomes the main drawback of PAS (short t1/2 necessitating frequent administration of high doses of PAS).
- MeSH
- antituberkulotika chemie MeSH
- COVID-19 * MeSH
- dánio pruhované MeSH
- kyselina aminosalicylová * farmakologie MeSH
- laktony MeSH
- lidé MeSH
- Mycobacterium tuberculosis * MeSH
- myši MeSH
- pyrazinamid farmakologie MeSH
- SARS-CoV-2 MeSH
- tuberkulóza * farmakoterapie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
1. elektronické vydání 1 online zdroj (52 stran)
Čtvrté, upravené vydání učebního textu pro posluchače Farmaceutické fakulty UK v Hradci Králové obsahuje úlohy určené k získání základních praktických dovedností při fyzikálních měřeních. Před každou úlohou jsou stručně shrnuty základní teoretické poznatky a vztahy potřebné k výpočtům.
- Klíčová slova
- Ostatní lékařské obory,
- MeSH
- biofyzika MeSH
- NLK Obory
- fyzika, biofyzika
Radioimmunoconjugates represent a promising class of therapeutics and diagnostics. The characterization of intermediate chelator-antibody products, i.e., without the radionuclide, is frequently omitted, bringing significant uncertainty in the radioimmunoconjugate preparation. In the present study, we explored the utility of reversed-phase (RPLC) and hydrophilic interaction (HILIC) liquid chromatography with UV detection to characterize ramucirumab stochastically conjugated with p-SCN-Bn-CHX-A"-DTPA chelator (shortly DTPA). The conjugation was well reflected in RPLC chromatograms, while chromatograms from HILIC were significantly less informative. RPLC analyses at the intact level confirmed that the conjugation resulted in a heterogeneous mixture of modified ramucirumab. Moreover, the RPLC of DTPA-ramucirumab confirmed heterogeneous conjugation of all subunits. The peptide mapping did not reveal substantial changes after the conjugation, indicating that most parts of ramucirumab molecules remained unmodified and that the DTPA chelator was bound to various sites. Eventually, the RPLC method for analysis of intact ramucirumab was successfully applied to online monitoring of conjugation reaction in 1 h intervals for a total of 24 h synthesis, which readily reflected the structural changes of ramucirumab in the form of retention time shift by 0.21 min and increase in peak width by 0.22 min. The results were obtained in real-time, practically under 10 min per monitoring cycle. To the best of our knowledge, our study represents the first evaluation of RPLC and HILIC to assess the quality of intermediates during the on-site preparation of radioimmunoconjugates prior to radiolabeling.
Tuberculosis is the number one killer of infectious diseases caused by a single microbe, namely Mycobacterium tuberculosis (Mtb). The success rate of curing this infection is decreasing due to emerging antimicrobial resistance. Therefore, novel treatments are urgently needed. As an attempt to develop new antituberculars effective against both drugs-sensitive and drug-resistant Mtb, we report the synthesis of a novel series inspired by combining fragments from the first-line agents isoniazid and pyrazinamide (series I) and isoniazid with the second-line agent 4-aminosalicylic acid (series II). We identified compound 10c from series II with selective, potent in vitro antimycobacterial activity against both drug-sensitive and drug-resistant Mtb H37Rv strains with no in vitro or in vivo cytotoxicity. In the murine model of tuberculosis, compound 10c caused a statistically significant decrease in colony-forming units (CFU) in spleen. Despite having a 4-aminosalicylic acid fragment in its structure, biochemical studies showed that compound 10c does not directly affect the folate pathway but rather methionine metabolism. In silico simulations indicated the possibility of binding to mycobacterial methionine-tRNA synthetase. Metabolic study in human liver microsomes revealed that compound 10c does not have any known toxic metabolites and has a half-life of 630 min, overcoming the main drawbacks of isoniazid (toxic metabolites) and 4-aminosalicylic acid (short half-life).
- MeSH
- antituberkulotika chemie MeSH
- isoniazid farmakologie MeSH
- kyselina aminosalicylová * farmakologie MeSH
- lidé MeSH
- methionin MeSH
- mikrobiální testy citlivosti MeSH
- Mycobacterium tuberculosis * MeSH
- myši MeSH
- tuberkulóza * farmakoterapie mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Publikační typ
- abstrakt z konference MeSH
- Publikační typ
- abstrakt z konference MeSH
The synthetic analogs of regulatory peptides radiolabeled with adequate radionuclides are perspective tools in nuclear medicine. However, undesirable uptake and retention in the kidney limit their application. Specific in vitro methods are used to evaluate undesirable renal accumulation. Therefore, we investigated the usefulness of freshly isolated rat renal cells for evaluating renal cellular uptake of receptor-specific peptide analogs. Special attention was given to megalin as this transport system is an important contributor to the active renal uptake of the peptides. Freshly isolated renal cells were obtained from native rat kidneys by the collagenase method. Compounds with known accumulation in renal cells were used to verify the viability of cellular transport systems. Megalin expressions in isolated rat renal cells were compared to two other potential renal cell models by Western blotting. Specific tubular cell markers were used to confirm the presence of proximal tubular cells expressing megalin in isolated rat renal cell preparations by immunohistochemistry. Colocalization experiments on isolated rat kidney cells confirmed the presence of proximal tubular cells bearing megalin in preparations. The applicability of the method was tested by an accumulation study with several analogs of somatostatin and gastrin labeled with indium-111 or lutetium-177. Therefore, isolated rat renal cells may be an effective screening tool for in vitro analyses of renal uptake and comparative renal accumulation studies of radiolabeled peptides or other radiolabeled compounds with potential nephrotoxicity.
- Publikační typ
- časopisecké články MeSH
In this study, we have focused on a multiparametric microbiological analysis of the antistaphylococcal action of the iodinated imine BH77, designed as an analogue of rafoxanide. Its antibacterial activity against five reference strains and eight clinical isolates of Gram-positive cocci of the genera Staphylococcus and Enterococcus was evaluated. The most clinically significant multidrug-resistant strains, such as methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant S. aureus (VRSA), and vancomycin-resistant Enterococcus faecium, were also included. The bactericidal and bacteriostatic actions, the dynamics leading to a loss of bacterial viability, antibiofilm activity, BH77 activity in combination with selected conventional antibiotics, the mechanism of action, in vitro cytotoxicity, and in vivo toxicity in an alternative animal model, Galleria mellonella, were analyzed. The antistaphylococcal activity (MIC) ranged from 15.625 to 62.5 μM, and the antienterococcal activity ranged from 62.5 to 125 μM. Its bactericidal action; promising antibiofilm activity; interference with nucleic acid, protein, and peptidoglycan synthesis pathways; and nontoxicity/low toxicity in vitro and in vivo in the Galleria mellonella model were found to be activity attributes of this newly synthesized compound. In conclusion, BH77 could be rightfully minimally considered at least as the structural pattern for future adjuvants for selected antibiotic drugs. IMPORTANCE Antibiotic resistance is among the largest threats to global health, with a potentially serious socioeconomic impact. One of the strategies to deal with the predicted catastrophic future scenarios associated with the rapid emergence of resistant infectious agents lies in the discovery and research of new anti-infectives. In our study, we have introduced a rafoxanide analogue, a newly synthesized and described polyhalogenated 3,5-diiodosalicylaldehyde-based imine, that effectively acts against Gram-positive cocci of the genera Staphylococcus and Enterococcus. The inclusion of an extensive and comprehensive analysis for providing a detailed description of candidate compound-microbe interactions allows the valorization of the beneficial attributes linked to anti-infective action conclusively. In addition, this study can help with making rational decisions about the possible involvement of this molecule in advanced studies or may merit the support of studies focused on related or derived chemical structures to discover more effective new anti-infective drug candidates.
- MeSH
- antibakteriální látky farmakologie chemie MeSH
- antiinfekční látky * farmakologie MeSH
- Enterococcus MeSH
- methicilin rezistentní Staphylococcus aureus * MeSH
- mikrobiální testy citlivosti MeSH
- rafoxanid farmakologie MeSH
- Staphylococcus aureus MeSH
- Staphylococcus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
In the original publication [...].
- Publikační typ
- tisková chyba MeSH