ETHNOPHARMACOLOGICAL RELEVANCE: Alzheimer's disease is the most common form of dementia, but its treatment options remain few and ineffective. To find new therapeutic strategies, natural products have gained interest due to their neuroprotective potential, being able to target different pathological hallmarks associated with this disorder. Several plant species are traditionally used due to their empirical neuroprotective effects and it is worth to explore their mechanism of action. AIM OF THE STUDY: This study intended to explore the neuroprotective potential of seven traditional medicinal plants, namely Scutellaria baicalensis, Ginkgo biloba, Hypericum perforatum, Curcuma longa, Lavandula angustifolia, Trigonella foenum-graecum and Rosmarinus officinalis. The safety assessment with reference to pesticides residues was also aimed. MATERIALS AND METHODS: Decoctions prepared from these species were chemically characterized by HPLC-DAD and screened for their ability to scavenge four different free radicals (DPPH•, ABTS•+, O2•‒ and •NO) and to inhibit enzymes related to neurodegeneration (cholinesterases and glycogen synthase kinase-3β). Cell viability through MTT assay was also evaluated in two different brain cell lines, namely non-tumorigenic D3 human brain endothelial cells (hCMEC/D3) and NSC-34 motor neurons. Furthermore, and using GC, 21 pesticides residues were screened. RESULTS: Regarding chemical composition, chromatographic analysis revealed the presence of several flavonoids, phenolic acids, curcuminoids, phenolic diterpenoids, one alkaloid and one naphthodianthrone in the seven decoctions. All extracts were able to scavenge free radicals and were moderate glycogen synthase kinase-3β inhibitors; however, they displayed weak to moderate acetylcholinesterase and butyrylcholinesterase inhibition. G. biloba and L. angustifolia decoctions were the less cytotoxic to hCMEC/D3 and NSC-34 cell lines. No pesticides residues were detected. CONCLUSIONS: The results extend the knowledge on the potential use of plant extracts to combat multifactorial disorders, giving new insights into therapeutic avenues for Alzheimer's disease.
- MeSH
- Alzheimerova nemoc patologie MeSH
- buněčné linie MeSH
- cholinesterasy účinky léků MeSH
- glykogensynthasa účinky léků MeSH
- léčivé rostliny chemie MeSH
- lidé MeSH
- neuroprotektivní látky škodlivé účinky farmakologie MeSH
- rezidua pesticidů analýza MeSH
- rostlinné extrakty škodlivé účinky farmakologie MeSH
- scavengery volných radikálů metabolismus MeSH
- tradiční čínská medicína metody MeSH
- viabilita buněk účinky léků MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Multitarget-directed ligands (MTDLs) are considered a promising therapeutic strategy to address the multifactorial nature of Alzheimer's disease (AD). Novel MTDLs have been designed as inhibitors of human acetylcholinesterases/butyrylcholinesterases, monoamine oxidase A/B, and glycogen synthase kinase 3β and as calcium channel antagonists via the Biginelli multicomponent reaction. Among these MTDLs, (±)-BIGI-3h was identified as a promising new hit compound showing in vitro balanced activities toward the aforementioned recognized AD targets. Additional in vitro studies demonstrated antioxidant effects and brain penetration, along with the ability to inhibit the aggregation of both τ protein and β-amyloid peptide. The in vivo studies have shown that (±)-BIGI-3h (10 mg/kg intraperitoneally) significantly reduces scopolamine-induced cognitive deficits.
- MeSH
- Alzheimerova nemoc * farmakoterapie MeSH
- blokátory kalciových kanálů farmakologie terapeutické užití MeSH
- cholinesterasové inhibitory farmakologie terapeutické užití MeSH
- GSK3B MeSH
- lidé MeSH
- ligandy MeSH
- monoaminoxidasa metabolismus MeSH
- vápníkové kanály MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
A novel series of aromatic esters (1a-1m) related to the Amaryllidaceae alkaloid (AA) haemanthamine were designed, synthesized and tested in vitro with particular emphasis on the treatment of neurodegenerative diseases. Some of the synthesized compounds revealed promising acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory profile. Significant human AChE (hAChE) inhibition was demonstrated by 11-O-(3-nitrobenzoyl)haemanthamine (1j) with IC50value of 4.0 ± 0.3 µM. The strongest human BuChE (hBuChE) inhibition generated 1-O-(2-methoxybenzoyl)haemanthamine (1g) with IC50 value 3.3 ± 0.4 µM. Moreover, 11-O-(2-chlorbenzoyl)haemanthamine (1m) was able to inhibit both enzymes in dose-dependent manner. The mode of hAChE and hBuChE inhibition was minutely inspected using enzyme kinetic analysis in tandem with in silico experiments, the latter elucidating crucial interaction in 1j-, 1m-hAChE and 1g-, 1m-hBuChE complexes. The blood-brain barrier (BBB) permeability was investigated applying the parallel artificial membrane permeation assay (PAMPA) to predict the CNS availability of the compounds.
- MeSH
- acetylcholinesterasa chemie metabolismus MeSH
- alkaloidy amarylkovitých chemie metabolismus terapeutické užití MeSH
- Alzheimerova nemoc farmakoterapie patologie MeSH
- Amaryllidaceae chemie metabolismus MeSH
- butyrylcholinesterasa chemie metabolismus MeSH
- cholinesterasové inhibitory chemická syntéza metabolismus terapeutické užití MeSH
- estery chemie MeSH
- fenantridiny chemie metabolismus terapeutické užití MeSH
- hematoencefalická bariéra účinky léků metabolismus MeSH
- kinetika MeSH
- lidé MeSH
- simulace molekulového dockingu MeSH
- vazebná místa MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Twenty-one known Amaryllidaceae alkaloids of various structural types and one undescribed alkaloid, named narcimatuline, have been isolated from fresh bulbs of Narcissus pseudonarcissus L. cv. Dutch Master. The chemical structures were elucidated by combination of MS, HRMS, 1D and 2D NMR spectroscopic techniques, and by comparison with literature data. Narcimatuline amalgamates two basic scaffolds of Amaryllidaceae alkaloids in its core, namely galanthamine and galanthindole. All isolated compounds were evaluated for their in vitro acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), prolyl oligopeptidase (POP), and glycogen synthase kinase-3β (GSK-3β) inhibitory activities. The most interesting biological profile was demonstrated by newly isolated alkaloid narcimatuline.
- MeSH
- acetylcholinesterasa metabolismus MeSH
- alkaloidy amarylkovitých chemie izolace a purifikace farmakologie MeSH
- Alzheimerova nemoc farmakoterapie metabolismus MeSH
- butyrylcholinesterasa metabolismus MeSH
- cholinesterasové inhibitory chemie izolace a purifikace farmakologie MeSH
- GSK3B antagonisté a inhibitory metabolismus MeSH
- lidé MeSH
- molekulární struktura MeSH
- Narcissus chemie MeSH
- neuroprotektivní látky chemie izolace a purifikace farmakologie MeSH
- serinové endopeptidasy metabolismus MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Twelve derivatives 1a-1m of the β-crinane-type alkaloid haemanthamine were developed. All the semisynthetic derivatives were studied for their inhibitory potential against both acetylcholinesterase and butyrylcholinesterase. In addition, glycogen synthase kinase 3β (GSK-3β) inhibition potency was evaluated in the active derivatives. In order to reveal the availability of the drugs to the CNS, we elucidated the potential of selected derivatives to penetrate through the blood-brain barrier (BBB). Two compounds, namely 11-O-(2-methylbenzoyl)-haemanthamine (1j) and 11-O-(4-nitrobenzoyl)-haemanthamine (1m), revealed the most intriguing profile, both being acetylcholinesterase (hAChE) inhibitors on a micromolar scale, with GSK-3β inhibition properties, and predicted permeation through the BBB. In vitro data were further corroborated by detailed inspection of the compounds' plausible binding modes in the active sites of hAChE and hBuChE, which led us to provide the structural determinants responsible for the activity towards these enzymes.
- MeSH
- alkaloidy amarylkovitých chemie metabolismus MeSH
- Alzheimerova nemoc metabolismus MeSH
- Amaryllidaceae chemie metabolismus MeSH
- fenantridiny chemie metabolismus MeSH
- GSK3B metabolismus MeSH
- hematoencefalická bariéra metabolismus MeSH
- lidé MeSH
- ligandy MeSH
- molekulární konformace MeSH
- molekulární modely MeSH
- molekulární struktura MeSH
- permeabilita MeSH
- simulace molekulového dockingu MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Glycogen synthase kinase-3β (GSK-3β) is a multifunctional serine/threonine protein kinase that was originally identified as an enzyme involved in the control of glycogen metabolism. It plays a key role in diverse physiological processes including metabolism, the cell cycle, and gene expression by regulating a wide variety of well-known substances like glycogen synthase, tau-protein, and β-catenin. Recent studies have identified GSK-3β as a potential therapeutic target in Alzheimer´s disease, bipolar disorder, stroke, more than 15 types of cancer, and diabetes. GSK-3β is one of the most attractive targets for medicinal chemists in the discovery, design, and synthesis of new selective potent inhibitors. In the current study, twenty-eight Amaryllidaceae alkaloids of various structural types were studied for their potency to inhibit GSK-3β. Promising results have been demonstrated by alkaloids of the homolycorine-{9-O-demethylhomolycorine (IC50 = 30.00 ± 0.71 µM), masonine (IC50 = 27.81 ± 0.01 μM)}, and lycorine-types {caranine (IC50 = 30.75 ± 0.04 μM)}.
Alzheimer's disease (AD) is a multifactorial pathology that requires multifaceted agents able to address its peculiar nature. In recent years, a plethora of proteins and biochemical pathways has been proposed as possible targets to counteract neurotoxicity. Although the complex scenario is not completely elucidated, close relationships are emerging among some of these actors. In particular, increasing evidence has shown that aggregation of amyloid beta (Aβ), glycogen synthase kinase 3β (GSK-3β) and oxidative stress are strictly interconnected and their concomitant modulation may have a positive and synergic effect in contrasting AD-related impairments. We designed compound 3 which demonstrated the ability to inhibit both GSK-3β (IC50 = 24.36 ± 0.01 μM) and Aβ42 self-aggregation (IC50 = 9.0 ± 1.4 μM), to chelate copper (II) and to act as exceptionally strong radical scavenger (kinh = 6.8 ± 0.5 · 105 M-1s-1) even in phosphate buffer at pH 7.4 (kinh = 3.2 ± 0.5 · 105 M-1s-1). Importantly, compound 3 showed high-predicted blood-brain barrier permeability, did not exert any significant cytotoxic effects in immature cortical neurons up to 50 μM and showed neuroprotective properties at micromolar concentration against toxic insult induced by glutamate.
- MeSH
- Alzheimerova nemoc farmakoterapie metabolismus MeSH
- cinnamáty chemická syntéza chemie farmakologie MeSH
- GSK3B antagonisté a inhibitory metabolismus MeSH
- molekulární struktura MeSH
- scavengery volných radikálů chemická syntéza chemie farmakologie MeSH
- stereoizomerie MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
In our ongoing study focused on Corydalis cava (Fumariaceae), used in folk medicine in the treatment of memory dysfunctions, we have investigated fifteen previously isolated alkaloids for their potential multifunctional activity on Alzheimer's disease (AD) targets. Determination of ß-site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibition was carried out using a BACE1-Immobilized Enzyme Reactor (IMER) by validating the assay with a multi-well plate format Fluorescence Resonance Energy Transfer (FRET) assay. Seven alkaloids out of fifteen were found to be active, with (-)-corycavamine (3) and (+)-corynoline (5) demonstrating the highest BACE1 inhibition activity, in the micromolar range, in a concentration dependent manner. BACE1-IMER was found to be a valid device for the fast screening of inhibitors and the determination of their potency. In a permeation assay (PAMPA) for the prediction of blood-brain barrier (BBB) penetration, the most active compounds, (-)-corycavamine (3) and (+)-corynoline (5), were found to be able to cross the BBB. Not all compounds showed activity against glycogen synthase kinase-3β (GSK-3β) and casein kinase-1δ (CK-1δ). On the basis of the reported results, we found that some C. cava alkaloids have multifunctional activity against AD targets (prolyl oligopeptidase, cholinesterases and BACE1). Moreover, we tried to elucidate the treatment effectivity (rational use) of its extract in memory dysfunction in folk medicine.
- MeSH
- alkaloidy chemie izolace a purifikace MeSH
- Alzheimerova nemoc MeSH
- aspartátové endopeptidasy antagonisté a inhibitory MeSH
- berberinové alkaloidy chemie izolace a purifikace MeSH
- Corydalis chemie MeSH
- enzymy imobilizované antagonisté a inhibitory MeSH
- hematoencefalická bariéra MeSH
- lidé MeSH
- rekombinantní proteiny MeSH
- sekretasy antagonisté a inhibitory MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH