Sustained activation of extracellular signal-regulated kinase (ERK) drives pathologies caused by mutations in fibroblast growth factor receptors (FGFRs). We previously identified the inositol phosphatase SHIP2 (also known as INPPL1) as an FGFR-interacting protein and a target of the tyrosine kinase activities of FGFR1, FGFR3, and FGFR4. We report that loss of SHIP2 converted FGF-mediated sustained ERK activation into a transient signal and rescued cell phenotypes triggered by pathologic FGFR-ERK signaling. Mutant forms of SHIP2 lacking phosphoinositide phosphatase activity still associated with FGFRs and did not prevent FGF-induced sustained ERK activation, demonstrating that the adaptor rather than the catalytic activity of SHIP2 was required. SHIP2 recruited Src family kinases to the FGFRs, which promoted FGFR-mediated phosphorylation and assembly of protein complexes that relayed signaling to ERK. SHIP2 interacted with FGFRs, was phosphorylated by active FGFRs, and promoted FGFR-ERK signaling at the level of phosphorylation of the adaptor FRS2 and recruitment of the tyrosine phosphatase PTPN11. Thus, SHIP2 is an essential component of canonical FGF-FGFR signal transduction and a potential therapeutic target in FGFR-related disorders.
- MeSH
- adaptorové proteiny signální transdukční genetika metabolismus MeSH
- aktivace enzymů MeSH
- extracelulárním signálem regulované MAP kinasy genetika metabolismus MeSH
- fosfatidylinositol-3,4,5-trisfosfát-5-fosfatasy genetika metabolismus MeSH
- fosforylace MeSH
- HEK293 buňky MeSH
- lidé MeSH
- MAP kinasový signální systém * MeSH
- membránové proteiny genetika metabolismus MeSH
- nádorové buněčné linie MeSH
- receptory fibroblastových růstových faktorů genetika metabolismus MeSH
- skupina kinas odvozených od src-genu genetika metabolismus MeSH
- tyrosinfosfatasa nereceptorového typu 11 genetika metabolismus MeSH
- vazba proteinů MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
In-cell profiling enables the evaluation of receptor tyrosine activity in a complex environment of regulatory networks that affect signal initiation, propagation and feedback. We used FGF-receptor signaling to identifyEGR1as a locus that strongly responds to the activation of a majority of the recognized protein kinase oncogenes, including 30 receptor tyrosine kinases and 154 of their disease-associated mutants. TheEGR1promoter was engineered to enhancetrans-activation capacity and optimized for simple screening assays with luciferase or fluorescent reporters. The efficacy of the developed, fully synthetic reporters was demonstrated by the identification of novel targets for two clinically used tyrosine kinase inhibitors, nilotinib and osimertinib. A universal reporter system for in-cell protein kinase profiling will facilitate repurposing of existing anti-cancer drugs and identification of novel inhibitors in high-throughput screening studies.
- MeSH
- buněčné linie MeSH
- cytologické techniky metody MeSH
- intravitální mikroskopie MeSH
- lidé MeSH
- myši MeSH
- onkogenní proteiny analýza MeSH
- optické zobrazování MeSH
- proteinkinasy analýza MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Immune defense is energetically costly, and thus an effective response requires metabolic adaptation of the organism to reallocate energy from storage, growth, and development towards the immune system. We employ the natural infection of Drosophila with a parasitoid wasp to study energy regulation during immune response. To combat the invasion, the host must produce specialized immune cells (lamellocytes) that destroy the parasitoid egg. We show that a significant portion of nutrients are allocated to differentiating lamellocytes when they would otherwise be used for development. This systemic metabolic switch is mediated by extracellular adenosine released from immune cells. The switch is crucial for an effective immune response. Preventing adenosine transport from immune cells or blocking adenosine receptor precludes the metabolic switch and the deceleration of development, dramatically reducing host resistance. Adenosine thus serves as a signal that the "selfish" immune cells send during infection to secure more energy at the expense of other tissues.