At present, nuclear condensation and fragmentation have been estimated also using Hoechst probes in fluorescence microscopy and flow cytometry. However, none of the methods used the Hoechst probes for quantitative spectrofluorometric assessment. Therefore, the aim of the present study was to develop a spectrofluorometric assay for detection of nuclear condensation and fragmentation in the intact cells. We used human hepatoma HepG2 and renal HK-2 cells cultured in 96-well plates treated with potent apoptotic inducers (i.e. cisplatin, staurosporine, camptothecin) for 6-48 h. Afterwards, the cells were incubated with Hoechst 33258 (2 µg/mL) and the increase of fluorescence after binding of the dye to DNA was measured. The developed spectrofluorometric assay was capable to detect nuclear changes caused by all tested apoptotic inducers. Then, we compared the outcomes of the spectrofluorometric assay with other methods detecting cell impairment and apoptosis (i.e. WST-1 and glutathione tests, TUNEL, DNA ladder, caspase activity, PARP-1 and JNKs expressions). We found that our developed spectrofluorometric assay provided results of the same sensitivity as the TUNEL assay but with the advantages of being fast processing, low-cost and a high throughput. Because nuclear condensation and fragmentation can be typical markers of cell death, especially in apoptosis, we suppose that the spectrofluorometric assay could become a routinely used method for characterizing cell death processes.
- MeSH
- antitumorózní látky farmakologie MeSH
- apoptóza účinky léků MeSH
- bisbenzimidazol chemie MeSH
- buněčná smrt účinky léků MeSH
- buněčné jádro účinky léků metabolismus MeSH
- buněčné linie MeSH
- buňky Hep G2 MeSH
- cisplatina farmakologie MeSH
- fluorescenční mikroskopie metody MeSH
- fluorescenční spektrometrie metody MeSH
- fragmentace DNA účinky léků MeSH
- kamptothecin farmakologie MeSH
- lidé MeSH
- průtoková cytometrie metody MeSH
- reprodukovatelnost výsledků MeSH
- staurosporin farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Publikační typ
- abstrakt z konference MeSH
The human proximal tubular HK-2 cell line is an immortalized cell line commonly used for studying proximal tubular toxicity. Even as their use is presently increasing, there unfortunately are no studies focused on functional changes in HK-2 cells associated with passaging. The aim of the present study, therefore, was to evaluate the functional stability of HK-2 cells during 13 weeks of continuous passaging after 6 and 24 h of treatment with model nephrotoxic compounds (i.e., acetaminophen, cisplatin, CdCl(2)). Short tandem repeat profile, the doubling time, cell diameter, glutathione concentration, and intracellular dehydrogenase activity were measured in HK-2 cells at each tested passage. The results showed that HK-2 cells exhibit stable morphology, cell size, and cell renewal during passaging. Mean doubling time was determined to be 54 h. On the other hand, we observed a significant effect of passaging on the susceptibility of HK-2 cells to toxic compounds. The largest difference in results was found in both cadmium and cisplatin treated cells across passages. We conclude that the outcomes of scientific studies on HK-2 cells can be affected by the number of passages even after medium-term cultivation and passaging for 13 weeks.
- MeSH
- antitumorózní látky toxicita MeSH
- buněčné kultury metody MeSH
- buněčné linie MeSH
- cisplatina toxicita MeSH
- kadmium toxicita MeSH
- lidé MeSH
- neopioidní analgetika toxicita MeSH
- paracetamol toxicita MeSH
- proximální tubuly ledvin účinky léků patologie MeSH
- viabilita buněk MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Cadmium is a heavy metal causing toxicity especially in kidney cells. The toxicity is linked also with enhanced oxidative stress leading to cell death. On the other hand, our recent experiments have shown that an increase of total intracellular dehydrogenases activity can also occur in kidney cells before declining until cell death. The aim of the present study, therefore, was to evaluate this transient enhancement in cell viability after cadmium treatment. The human kidney HK-2 cell line was treated with CdCl(2) at concentrations 0-200 microM for 2-24 h and intracellular dehydrogenase activity was tested. In addition, we measured reactive oxygen species (ROS) production, glutathione levels, mitochondrial membrane potential, and C-Jun-N-terminal kinase (JNK) activation. We found that significantly increased dehydrogenase activity could occur in cells treated with 25, 100, and 200 microM CdCl(2). Moreover, the results showed an increase in ROS production linked with JNK activation following the enhancement of dehydrogenase activity. Other tests detected no relationship with the increased in intracellular dehydrogenase activity. Hence, the transient increase in dehydrogenase activity in HK-2 cells preceded the enhancement of ROS production and our finding provides new evidence in cadmium kidney toxicity.
- MeSH
- aktivace enzymů účinky léků fyziologie MeSH
- buněčné linie MeSH
- kadmium toxicita MeSH
- lidé MeSH
- membránový potenciál mitochondrií účinky léků fyziologie MeSH
- oxidační stres účinky léků fyziologie MeSH
- oxidoreduktasy metabolismus MeSH
- proximální tubuly ledvin účinky léků metabolismus MeSH
- reaktivní formy kyslíku metabolismus MeSH
- viabilita buněk účinky léků fyziologie MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Publikační typ
- abstrakt z konference MeSH
- Publikační typ
- abstrakt z konference MeSH
Apoptosis has been recognized as a type of programmed cell death connected with characteristic morphological and biochemical changes in cells. This programmed cell death plays an important role in the genesis of a number of physiological and pathological processes. Thus, it can be very important to detect the signs of apoptosis in a study of cellular metabolism. The present paper provides an overview of methods often being used for detecting DNA fragmentation as one of the most specific findings in apoptosis. To date, three routine assays have been developed for detecting DNA fragmentation: DNA ladder assay, TUNEL assay, and comet assay. All these methods differ in their principles for detecting DNA fragmentation. DNA ladder assay detects the characteristic "DNA ladder" pattern formed during internucleosomal cleavage of DNA. Terminal deoxynUcleotidyl transferase Nick-End Labeling (TUNEL) assay detects DNA strand breaks using terminal deoxynucleotidyl transferase catalyzing attachment of modified deoxynucleotides on the DNA strand breaks. Comet assay can be used for detecting nucleus breakdown producing single/double-strand DNA breaks. The aim of this review is to describe the present knowledge on these three methods, including optimized approaches, techniques, and limitations.
- MeSH
- apoptóza genetika fyziologie MeSH
- biotest metody MeSH
- DNA analýza genetika metabolismus MeSH
- fragmentace DNA * MeSH
- kometový test metody MeSH
- koncové značení zlomů DNA in situ metody MeSH
- lidé MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH