In previous RENEB interlaboratory comparisons based on the manual scoring of dicentric chromosomes, a tendency for systematic overestimation for doses > 2.5 Gy was found. However, these exercises included only very few doses in the high dose range, and they were heterogeneous in terms of radiation quality and evaluation mode, and comparable only to a limited extent. Here, this presumed deviation was explored by investigating three doses > 2.5 Gy. Blood samples were irradiated (2.56, 3.41 and 4.54 Gy) using a 60Co source and sent to 14 member laboratories of the RENEB network, which performed the dicentric chromosome assay (manual and/or semi-automatic scoring) and reported dose estimates. Most participants provided estimates that agreed very well with the physical reference doses and all provided dose estimates were in the correct clinical category (> 2 Gy). The previously observed tendency for a systematic bias across all laboratories was not confirmed. However, tendencies for systematic underestimation were detected for dose estimations for reference doses given in terms of absorbed dose to blood and for some participants, a laboratory-specific trend of systematic under- or overestimation was observed. The importance of regularly performed quality checks for a broad dose range became obvious to avoid misinterpretation of results.
In the last decade, geopolitical instability across the globe has increased the risk of a large-scale radiological event, when radiation biomarkers would be needed for an effective triage of an irradiated population. Ionizing radiation elicits a complex response in the proteome, genome, and metabolome and hence can be leveraged as rapid and sensitive indicators of irradiation-induced damage. We analyzed the plasma of total-body irradiated (TBI) leukemia patients (n = 24) and nonhuman primates (NHPs; n = 10) before and 24 h after irradiation, and we performed a global metabolomic study aiming to provide plasma metabolites as candidate radiation biomarkers for biological dosimetry. Peripheral blood samples were collected according to the appropriate ethical approvals, and metabolites were extracted and analyzed by liquid chromatography mass spectrometry. We identified an array of metabolites significantly altered by irradiation, including bilirubin, cholesterol, and 18-hydroxycorticosterone, which were detected in leukemia patients and NHPs. Pathway analysis showed overlapping perturbations in steroidogenesis, porphyrin metabolism, and steroid hormone biosynthesis and metabolism. Additionally, we observed dysregulation in bile acid biosynthesis and tyrosine metabolism in the TBI patient cohort. This investigation is, to our best knowledge, among the first to provide valuable insights into a comparison between human and NHP irradiation models. The findings from this study could be leveraged for translational biological dosimetry.
- MeSH
- biologické markery krev MeSH
- celotělové ozáření * MeSH
- dospělí MeSH
- ionizující záření MeSH
- leukemie krev metabolismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- Macaca mulatta MeSH
- metabolom * MeSH
- metabolomika metody MeSH
- zvířata MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The increasing threat of nuclear incidents and the widespread use of ionizing radiation (IR) in medical treatments underscore the urgent need for effective radiation countermeasures. Despite the availability of compounds such as amifostine, their clinical utility is significantly limited by adverse side effects and logistical challenges in administration. This study focuses on the synthesis and evaluation of novel piperazine derivatives as potential radioprotective agents, with the aim of overcoming the limitations associated with current countermeasures. We designed, synthesized, and evaluated a series of 1-(2-hydroxyethyl)piperazine derivatives. The compounds were assessed for cytotoxicity across a panel of human cell lines, and for their radioprotective effects in the MOLT-4 lymphoblastic leukemia cell line and in peripheral blood mononuclear cells (PBMCs) exposed to gamma radiation. The radioprotective efficacy was further quantified using the dicentric chromosome assay (DCA) to measure DNA damage mitigation. Among the synthesized derivatives, compound 6 demonstrated the most significant radioprotective effects in vitro, with minimal cytotoxicity across the tested cell lines. Compound 3 also showed notable efficacy, particularly in reducing dicentric chromosomes, thus indicating its potential to mitigate DNA damage from IR. Both compounds exhibited superior safety profiles and effectiveness compared to amifostine, suggesting their potential as more viable radioprotective agents. This study highlights the development of novel piperazine derivatives with promising radioprotective properties. Compound 6 emerged as the leading candidate, offering an optimal balance between efficacy and safety, with compound 3 also displaying significant potential. These findings support the further development and clinical evaluation of these compounds as safer, and more effective radiation countermeasures.
- Publikační typ
- časopisecké články MeSH
The dramatic rise in diagnostic procedures, radioisotope-based scans and intervention procedures has created a very valid concern regarding the long-term biological consequences from exposure to low doses of ionizing radiation. Despite its unambiguous medical benefits, additional knowledge on the health outcome of its use is essential. This review summarizes the available information regarding the biological consequences of low-dose radiation (LDR) exposure in humans (e.g. cytogenetic changes, cancer risk and radiation-induced cataracts. However, LDR studies remain relatively new and thus an encompassing view of its biological effects and relevant mechanisms in the human body is still needed.
- MeSH
- dávka záření MeSH
- ionizující záření * MeSH
- lidé MeSH
- počítačová rentgenová tomografie metody MeSH
- radiační poranění * etiologie prevence a kontrola MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The JC-1 dye is widely used in apoptosis studies to monitor mitochondrial health. The probe was tested in vitro on two established cell lines and peripheral porcine blood lymphocytes after gamma irradiation (IR) to assess its potential in biodosimetric evaluation. In brief, we stained irradiated and non-irradiated cells with the JC-1 dye to determine the existing changes in mitochondrial membrane potential and monitor cell health through flow cytometry. The stage of injury in these cells was evaluated through an irradiated versus non-irradiated ratio (IVNIR), comparing the relative proportion of polarised cells containing red JC-1 aggregates. We observed a decreasing IVNIR as the radiation dose increased (i.e. 0.5; 1; 2; 4; 6; 8 and 10 Gy), performing the analysis at 4, 8 and 24 h after IR in all the tested cells. The results from the JC1-dye test showed that CD4 T lymphocytes were more sensitive to irradiation than other subpopulations.
Purpose: Insulin-like growth factor-1 (IGF-1) stimulates epithelial regeneration but may also induce life-threatening hypoglycemia. In our study, we first assessed its safety. Subsequently, we examined the effect of IGF-1 administered in different dose regimens on gastrointestinal damage induced by high doses of gamma radiation. Material and methods: First, fasting C57BL/6 mice were injected subcutaneously with IGF-1 at a single dose of 0, 0.2, 1, and 2 mg/kg to determine the maximum tolerated dose (MTD). The glycemic effect of MTD (1 mg/kg) was additionally tested in non-fasting animals. Subsequently, a survival experiment was performed. Animals were irradiated (60Co; 14, 14.5, or 15 Gy; shielded head), and IGF-1 was administered subcutaneously at 1 mg/kg 1, 24, and 48 h after irradiation. Simultaneously, mice were irradiated (60Co; 12, 14, or 15 Gy; shielded head), and IGF-1 was administered subcutaneously under the same regimen. Jejunum and lung damage were assessed 84 h after irradiation. Finally, we evaluated the effect of six different IGF-1 dosage regimens administered subcutaneously on gastrointestinal damage and peripheral blood changes in mice 6 days after irradiation (60Co; 12 and 14 Gy; shielded head). The regimens differed in the number of doses (one to five doses) and the onset of administration (starting at 1 [five regimens] or 24 h [one regimen] after irradiation). Results: MTD was established at 1 mg/kg. MTD mitigated lethality induced by 14 Gy and reduced jejunum and lung damage caused by 12 and 14 Gy. However, different dosing regimens showed different efficacy, with three and four doses (administered 1, 24, and 48 h and 1, 24, 48, and 72 h after irradiation, respectively) being the most effective. The three-dose regimens supported intestinal regeneration even if the administration started at 24 h after irradiation, but its potency decreased. Conclusion: IGF-1 seems promising in the mitigation of high-dose irradiation damage. However, the selected dosage regimen affects its efficacy.
- Publikační typ
- časopisecké články MeSH