The aim of the study was to examine the potential role of mitochondrial permeability transition pore (mPTP) in the cardioprotective effect of chronic continuous hypoxia (CH) against acute myocardial ischemia/reperfusion (I/R) injury. Adult male Wistar rats were adapted to CH for 3 weeks, while their controls were kept under normoxic conditions. Subsequently, they were subjected to I/R insult while being administered with mPTP inhibitor, cyclosporin A (CsA). Infarct size and incidence of ischemic and reperfusion arrhythmias were determined. Our results showed that adaptation to CH as well as CsA administration reduced myocardial infarct size in comparison to the corresponding control groups. However, administration of CsA did not amplify the beneficial effect of CH, suggesting that inhibition of mPTP opening contributes to the protective character of CH.
- MeSH
- chronická nemoc MeSH
- cyklosporin * farmakologie MeSH
- hypoxie * metabolismus MeSH
- infarkt myokardu metabolismus patologie prevence a kontrola MeSH
- krysa rodu rattus MeSH
- potkani Wistar * MeSH
- přechodový pór mitochondriální permeability * metabolismus MeSH
- reperfuzní poškození myokardu * metabolismus prevence a kontrola patologie MeSH
- srdeční mitochondrie metabolismus účinky léků patologie MeSH
- transportní proteiny mitochondriální membrány metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Mitochondrial retrograde signaling is a pathway of communication from mitochondria to the nucleus. Recently, natural mitochondrial genome (mtDNA) polymorphisms (haplogroups) received increasing attention in the pathophysiology of human common diseases. However, retrograde effects of mtDNA variants on such traits are difficult to study in humans. The conplastic strains represent key animal models to elucidate regulatory roles of mtDNA haplogroups on defined nuclear genome background. To analyze the relationship between mtDNA variants and cardiometabolic traits, we derived a set of rat conplastic strains (SHR-mtBN, SHR-mtF344 and SHR-mtLEW), harboring all major mtDNA haplotypes present in common inbred strains on the nuclear background of the spontaneously hypertensive rat (SHR). The BN, F344 and LEW mtDNA differ from the SHR in multiple amino acid substitutions in protein coding genes and also in variants of tRNA and rRNA genes. Different mtDNA haplotypes were found to predispose to various sets of cardiometabolic phenotypes which provided evidence for significant retrograde effects of mtDNA in the SHR. In the future, these animals could be used to decipher individual biochemical components involved in the retrograde signaling.
- MeSH
- fenotyp MeSH
- kardiovaskulární nemoci * metabolismus MeSH
- krysa rodu rattus MeSH
- mitochondriální DNA * genetika MeSH
- mitochondrie metabolismus MeSH
- potkani inbrední F344 MeSH
- potkani inbrední SHR MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
AIM: It has been demonstrated that tumour necrosis factor-alpha (TNF-α) via its receptor 2 (TNFR2) plays a role in the cardioprotective effects of preconditioning. It is also well known that chronic hypoxia is associated with activation of inflammatory response. With this background, we hypothesized that TNF-α signalling may contribute to the improved ischaemic tolerance of chronically hypoxic hearts. METHODS: Adult male Wistar rats were kept either at room air (normoxic controls) or at continuous normobaric hypoxia (CNH; inspired O2 fraction 0.1) for 3 weeks; subgroups of animals were treated with infliximab (monoclonal antibody against TNF-α; 5 mg kg(-1), i.p., once a week). Myocardial levels of oxidative stress markers and the expression of selected signalling molecules were analysed. Infarct size (tetrazolium staining) was assessed in open-chest rats subjected to acute coronary artery occlusion/reperfusion. RESULTS: CNH increased myocardial TNF-α level and expression of TNFR2; this response was abolished by infliximab treatment. CNH reduced myocardial infarct size from 50.8 ± 4.3% of the area at risk in normoxic animals to 35.5 ± 2.4%. Infliximab abolished the protective effect of CNH (44.9 ± 2.0%). CNH increased the levels of oxidative stress markers (3-nitrotyrosine and malondialdehyde), the expression of nuclear factor κB and manganese superoxide dismutase, while these effects were absent in infliximab-treated animals. CNH-elevated levels of inducible nitric oxide synthase and cyclooxygenase 2 were not affected by infliximab. CONCLUSION: TNF-α plays a role in the induction of ischaemia-resistant cardiac phenotype of CNH rats, possibly via the activation of protective redox signalling.
- MeSH
- fyziologická adaptace fyziologie MeSH
- hypoxie metabolismus MeSH
- infliximab farmakologie MeSH
- ischemická choroba srdeční metabolismus MeSH
- krysa rodu rattus MeSH
- myokard metabolismus MeSH
- NF-kappa B metabolismus MeSH
- oxidační stres účinky léků MeSH
- potkani Wistar MeSH
- receptory TNF - typ II metabolismus MeSH
- srdce účinky léků MeSH
- superoxiddismutasa metabolismus MeSH
- synthasa oxidu dusnatého, typ II metabolismus MeSH
- TNF-alfa antagonisté a inhibitory metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- MeSH
- financování organizované MeSH
- Publikační typ
- abstrakty MeSH