A category of naked maghemite nanoparticles (γ-Fe2O3), named surface active maghemite nanoparticles (SAMNs), is characterized by biological safety, high water colloidal stability and a surface chemistry permitting the binding of ligands. In the present study, the interaction between SAMNs and an antibiotic displaying chelating properties (oxytetracycline, OxyTC) was extensively structurally and magnetically characterized. OxyTC emerged as an ideal probe for providing insights into the colloidal properties of SAMNs. At the same time, SAMNs turned out as an elective tool for water remediation from OxyTC. Therefore, a dilute colloidal suspension of SAMNs was used for the removal of OxyTC in large volume tanks where, to simulate a real in situ application, a population of zebrafish (Danio rerio) was introduced. Interestingly, SAMNs led to the complete removal of the drug without any sign of toxicity for the animal model. Moreover, OxyTC immobilized on SAMNs surface resulted safe for sensitive Escherichia coli bacteria strain. Thus, SAMNs were able to recover the drug and to suppress its antibiotic activity envisaging their feasibility as competitive option for water remediation from OxyTC in more nature related scenarios. The present contribution stimulates the use of novel smart colloidal materials to cope with complex environmental issues.
- MeSH
- antibakteriální látky chemie farmakologie MeSH
- dánio pruhované MeSH
- Escherichia coli účinky léků MeSH
- koloidy chemie MeSH
- magnetické nanočástice chemie MeSH
- mikrobiální testy citlivosti MeSH
- oxytetracyklin chemie farmakologie MeSH
- povrchové vlastnosti MeSH
- suspenze chemie MeSH
- velikost částic MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Aedes aegypti mosquitos are widespread vectors of several diseases and their control is of primary importance for biological and environmental reasons, and novel safe insecticides are highly desirable. An eco-friendly photosensitizing magnetic nanocarrier with larvicidal effects on Aedes aegypti was proposed. The innovative core-shell hybrid nanomaterial was synthesized by combining peculiar magnetic nanoparticles (called Surface Active Maghemite Nanoparticles - SAMNs, the core) and chlorin-e6 as photosensitizer (constituting the shell) via self-assembly in water. The hybrid nanomaterial (SAMN@chlorin) was extensively characterized and tested for the photocidal activity on larvae of Aedes aegypti. The SAMN@chlorin core-shell nanohybrid did not present any toxic effect in the dark, but, upon light exposure, showed a higher photocidal activity than free chlorin-e6. Moreover, the eco-toxicity of SAMN@chlorin was determined in adults and neonates of Daphnia magna, where delayed toxicity was observed only after prolonged (≥4 h) exposure to intense light, on the green alga Pseudokirchneriella subcapitata and on the duckweed Lemna minor on which no adverse effects were observed. The high colloidal stability, the physico-chemical robustness and the magnetic drivability of the core-shell SAMN@chlorin nanohybrid, accompanied by the high photocidal activity on Aedes aegypti larvae and reduced environmental concerns, can be proposed as a safe alternative to conventional insecticides.
- MeSH
- Aedes * MeSH
- Chlorophyceae účinky léků účinky záření MeSH
- Daphnia účinky léků účinky záření MeSH
- insekticidy chemie toxicita MeSH
- larva * MeSH
- nanočástice chemie MeSH
- porfyriny chemie toxicita MeSH
- povrchové vlastnosti MeSH
- světlo MeSH
- voda chemie MeSH
- železité sloučeniny chemie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The ability of peculiar iron oxide nanoparticles (IONPs) to evade the immune system was investigated in vivo. The nanomaterial was provided directly into the farming water of zebrafish ( Danio rerio) and the distribution of IONPs and the delivery of oxytetracycline (OTC) was studied evidencing the successful overcoming of the intestinal barrier and the specific and prolonged (28 days) organotropic delivery of OTC to the fish ovary. Noteworthy, no sign of adverse effects was observed. In fish blood, IONPs were able to specifically bind apolipoprotein A1 (Apo A1) and molecular modeling showed the structural analogy between the IONP@Apo A1 nanoconjugate and high-density lipoprotein (HDL). Thus, the preservation of the biological identity of the protein suggests a plausible explanation of the observed overcoming of the intestinal barrier, of the great biocompatibity of the nanomaterial, and of the prolonged drug delivery (benefiting of the lipoprotein transport route). The present study promises novel and unexpected stealth materials in nanomedicine.
- MeSH
- hematoencefalická bariéra MeSH
- hmotnostní spektrometrie MeSH
- kovové nanočástice chemie MeSH
- ryby MeSH
- systémy cílené aplikace léků * MeSH
- vazba proteinů MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- železité sloučeniny chemie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Recently, the indiscriminate use of antibiotics in the aquaculture sector has raised public concern because of possible toxic effects, development of bacterial resistance, and accumulation of residues in individual tissues. Even if several countries have developed regulations about their use, it is clear that long-term growth of the aquaculture industry requires both ecologically sound practices and sustainable resource management. Alternative strategies for better management of antibiotic administration are of primary interest to improve absorption rates and, as a consequence, to reduce their release into the aquatic environment. The present study investigates, for the first time to our knowledge, a new methodology for oxytetracycline (OTC) administration through the use of iron oxide nanoparticles (NPs) (made of maghemite γ-Fe2O3) in zebrafish (Danio rerio). Fish were divided into 4 experimental groups: control; group A exposed to 4 mg/L OTC (through water); group B exposed to the 100 mg/L SAMNs@OTC complex (equivalent to 4 mg/L OTC), and group C exposed to bare NPs. No detoxification processes or anatomical alterations were observed in fish exposed to bare NPs. Exposure of fish to the SAMNs@OTC complex resulted in a 10 times higher OTC accumulation with respect to using water exposure. This new OTC administration method seems much more efficient with respect to the traditional way of exposure and has the potentiality to reduce antibiotic utilization and possible environmental impacts. However, the dynamics related to OTC release from the SAMNs@OTC complex are still not clear and need further investigations.
- MeSH
- antibakteriální látky aplikace a dávkování MeSH
- dánio pruhované * MeSH
- kovové nanočástice chemie MeSH
- oxytetracyklin aplikace a dávkování MeSH
- rybářství MeSH
- systémy cílené aplikace léků metody normy MeSH
- železité sloučeniny chemie MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Our work provides strong support for the hypothesis that Sinularia flexibilis ingests diatoms such as Thalassiosira pseudonana. We assessed algal ingestion by S. flexibilis through estimates of algal removal, histological analyses, scanning electron microscopy observations, and gene expression determination (18S and silicon transporter 1) by real time PCR. Cell counts are strongly suggestive of algal removal by the coral; light and scanning microscopy provide qualitative evidence for the ingestion of T. pseudonana by S. flexibilis, while molecular markers did not prove to be sufficiently selective/specific to give clear results. We thus propose that previous instances of inability of corals to ingest algae are reconsidered using different technical approach, before concluding that coral herbivory is not a general feature.
- MeSH
- býložravci MeSH
- dieta * MeSH
- DNA analýza MeSH
- korálnatci metabolismus MeSH
- plankton * MeSH
- rozsivky * MeSH
- stravovací zvyklosti * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH