OBJECTIVE: Age-at-death estimation is usually done manually by experts. As such, manual estimation is subjective and greatly depends on the past experience and proficiency of the expert. This becomes even more critical if experts need to evaluate individuals with unknown population affinity or with affinity that they are not familiar with. The purpose of this study is to design a novel age-at-death estimation method allowing for automatic evaluation on computers, thus eliminating the human factor. METHODS: We used a traditional machine-learning approach with explicit feature extraction. First, we identified and described the features that are relevant for age-at-death estimation. Then, we created a multi-linear regression model combining these features. Finally, we analysed the model performance in terms of Mean Absolute Error (MAE), Mean Bias Error (MBE), Slope of Residuals (SoR) and Root Mean Squared Error (RMSE). RESULTS: The main result of this study is a population-independent method of estimating an individual's age-at-death using the acetabulum of the pelvis. Apart from data acquisition, the whole procedure of pre-processing, feature extraction and age estimation is fully automated and implemented as a computer program. This program is a part of a freely available web-based software tool called CoxAGE3D, which is available at https://coxage3d.fit.cvut.cz/. Based on our dataset, the MAE of the presented method is about 10.7 years. In addition, five population-specific models for Thai, Lithuanian, Portuguese, Greek and Swiss populations are also given. The MAEs for these populations are 9.6, 9.8, 10.8, 10.5 and 9.2 years, respectively. Our age-at-death estimation method is suitable for individuals with unknown population affinity and provides acceptable accuracy. The age estimation error cannot be completely eliminated, because it is a consequence of the variability of the ageing process of different individuals not only across different populations but also within a certain population.
- MeSH
- acetabulum * diagnostické zobrazování MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- lineární modely MeSH
- mladý dospělý MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- software * MeSH
- soudní antropologie * metody MeSH
- strojové učení * MeSH
- určení kostního věku * metody MeSH
- zobrazování trojrozměrné * MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Thanks to technical progress and the availability of virtual data, sex estimation methods as part of a biological profile are undergoing an inevitable evolution. Further reductions in subjectivity, but potentially also in measurement errors, can be brought by approaches that automate the extraction of variables. Such automatization also significantly accelerates and facilitates the specialist's work. The aim of this study is (1) to apply a previously proposed algorithm (Kuchař et al. 2021) to automatically extract 10 variables used for the DSP2 sex estimation method, and (2) to test the robustness of the new automatic approach in a current heterogeneous population. For the first aim, we used a sample of 240 3D scans of pelvic bones from the same individuals, which were measured manually for the DSP database. For the second aim a sample of 108 pelvic bones from the New Mexico Decedent Image Database was used. The results showed high agreement between automatic and manual measurements with rTEM below 5% for all dimensions except two. The accuracy of final sex estimates based on all 10 variables was excellent (error rate 0.3%). However, we observed a higher number of undetermined individuals in the Portuguese sample (25% of males) and the New Mexican sample (36.5% of females). In conclusion, the procedure for automatic dimension extraction was successfully applied both to a different type of data and to a heterogeneous population.
- MeSH
- algoritmy * MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- pánevní kosti * diagnostické zobrazování MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- soudní antropologie * metody MeSH
- určení pohlaví podle kostry * metody MeSH
- zobrazování trojrozměrné * MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Portugalsko MeSH
In this study we tested classification performance of a sex estimation method from the mandible originally developed by Sella-Tunis et al. (2017) on a heterogeneous Israeli population. Mandibular linear dimensions were measured on 60 CT scans derived from the Czech living population. Classification performance of Israeli discriminant functions (DFs-IL) was analyzed in comparison with calculated Czech discriminant functions (DFs-CZ) while different posterior probability thresholds (currently discussed in the forensic literature) were employed. Our results comprehensively illustrate sensitivity of different discriminant functions to population differences in body size and degree of sexual dimorphism. We demonstrate that the error rate may be biased when presented per posterior probability threshold. DF-IL 1 showed least sensitivity to population origin and fulfilled criteria of sufficient classification performance when applied on the Czech sample with a minimum posterior probability threshold of 0.88 reaching overall accuracy ≥ 95%, zero sex bias, and 80% of classified individuals. The last parameter was higher in DF-CZ 1 which was the main difference between those two DFs suggesting relatively low dependance on population origin. As the use of population-specific methods is often prevented by complicated assessment of population origin, DF-IL 1 is a candidate for a sufficiently robust method that could be reliably applied outside the reference sample, and thus, its classification performance deserves further testing on more population samples.
- MeSH
- diskriminační analýza MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mandibula * diagnostické zobrazování anatomie a histologie MeSH
- mladý dospělý MeSH
- počítačová rentgenová tomografie MeSH
- pravděpodobnost * MeSH
- senioři MeSH
- soudní antropologie metody MeSH
- určení pohlaví podle kostry * metody MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
An increasing number of software tools can be used in forensic anthropology to estimate a biological profile, but further studies in other populations are required for more robust validation. The present study aimed to evaluate the validity of MorphoPASSE software for sex estimation from sexually dimorphic cranial traits recorded on 3D CT models (n = 180) from three populations samples (Czech, French, and Egyptian). Two independent observers performed scoring of 4 cranial traits (2 of them bilateral) in each population sample of 30 males and 30 females. The accuracy of sex estimation using traditional posterior probability threshold (pp = 0.5) ranged from 85.6% to 88.3% and overall classification error from 14.4% to 11.7% for both observers, and corresponds to the previously published values of the method. The MorphoPASSE method is also affected by the subjectivity of the observers, as both observers show agreement in sex assignment in 83.9% of cases, regardless of the accuracy of the estimates. Applying a higher posterior probability threshold (pp 0.95) provided classification accuracy of 97.9% and 93.3% of individuals (for observer A and B respectively), minimizing the risk of error to 2.1% and 6.7%, respectively. However, sex estimation can only be applied to 54% and 66% of individuals, respectively. Our results demonstrate the validity of the MorphoPASSE software for cranial sex estimation outside the reference population. However, the achieved classification success is accompanied by a high risk of errors, the reduction of which is only possible by increasing the posterior probability threshold.
- MeSH
- dospělí MeSH
- lebka * anatomie a histologie diagnostické zobrazování MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- počítačová rentgenová tomografie MeSH
- pravděpodobnost MeSH
- reprodukovatelnost výsledků MeSH
- software * MeSH
- soudní antropologie * metody MeSH
- určení pohlaví podle kostry * metody MeSH
- zobrazování trojrozměrné MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- validační studie MeSH
- Geografické názvy
- Egypt MeSH
- Francie MeSH
This work presents an automated data-mining model for age-at-death estimation based on 3D scans of the auricular surface of the pelvic bone. The study is based on a multi-population sample of 688 individuals (males and females) originating from one Asian and five European identified osteological collections. Our method requires no expert knowledge and achieves similar accuracy compared to traditional subjective methods. Apart from data acquisition, the whole procedure of pre-processing, feature extraction and age estimation is fully automated and implemented as a computer program. This program is a part of a freely available web-based software tool called CoxAGE3D. This software tool is available at https://coxage3d.fit.cvut.cz/ Our age-at-death estimation method is suitable for use on individuals with known/unknown population affinity and provides moderate correlation between the estimated age and actual age (Pearson's correlation coefficient is 0.56), and a mean absolute error of 12.4 years.
- MeSH
- data mining MeSH
- faciální stigmatizace MeSH
- lidé MeSH
- obličej MeSH
- pánevní kosti * diagnostické zobrazování MeSH
- software MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH