BACKGROUND: Inflammation-induced testicular damage is a significant contributing factor to the increasing incidence of infertility. Traditional treatments during the inflammatory phase often fail to achieve the desired fertility outcomes, necessitating innovative interventions such as cell therapy. METHODS: We explored the in vivo properties of intravenously administered Sertoli cells (SCs) in an acute lipopolysaccharide (LPS)-induced inflammatory mouse model. Infiltrating and resident myeloid cell phenotypes were assessed using flow cytometry. The impact of SC administration on testis morphology and germ cell quality was evaluated using computer-assisted sperm analysis (CASA) and immunohistochemistry. RESULTS: SCs demonstrated a distinctive migration pattern, importantly they preferentially concentrated in the testes and liver. SC application significantly reduced neutrophil infiltration as well as preserved the resident macrophage subpopulations. SCs upregulated MerTK expression in both interstitial and peritubular macrophages. Applied SC treatment exhibited protective effects on sperm including their motility and kinematic parameters, and maintained the physiological testicular morphology. CONCLUSION: Our study provides compelling evidence of the therapeutic efficacy of SC transplantation in alleviating acute inflammation-induced testicular damage. These findings contribute to the expanding knowledge on the potential applications of cell-based therapies for addressing reproductive health challenges and offer a promising approach for targeted interventions in male infertility.
- MeSH
- lipopolysacharidy toxicita MeSH
- makrofágy metabolismus MeSH
- motilita spermií MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- Sertoliho buňky * metabolismus MeSH
- spermie * metabolismus MeSH
- testis MeSH
- tyrosinkinasa c-Mer metabolismus genetika MeSH
- zánět * patologie terapie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The mammalian body possesses remarkable adaptability to cold exposure, involving intricate adjustments in cellular metabolism, ultimately leading to thermogenesis. However, cold-induced stress can impact immune response, primarily through noradrenaline-mediated pathways. In our study, we utilized a rat model subjected to short-term or long-term mild cold exposure to investigate systemic immune response during the cold acclimation. To provide human relevance, we included a group of regular cold swimmers in our study. Our research revealed complex relationship between cold exposure, neural signaling, immune response, and thermogenic regulation. One-day cold exposure triggered stress response, including cytokine production in white adipose tissue, subsequently activating brown adipose tissue, and inducing thermogenesis. We further studied systemic immune response, including the proportion of leukocytes and cytokines production. Interestingly, γδ T cells emerged as possible regulators in the broader systemic response, suggesting their possible contribution in the dynamic process of cold adaptation. We employed RNA-seq to gain further insights into the mechanisms by which γδ T cells participate in the response to cold. Additionally, we challenged rats exposed to cold with the Toll-like receptor 2 agonist, showing significant modulation of immune response. These findings significantly contribute to understanding of the physiological acclimation that occur in response to cold exposure.
- MeSH
- aklimatizace imunologie MeSH
- cytokiny metabolismus MeSH
- hnědá tuková tkáň imunologie metabolismus MeSH
- krysa rodu rattus MeSH
- lidé MeSH
- nízká teplota * MeSH
- receptory antigenů T-buněk gama-delta imunologie metabolismus MeSH
- T-lymfocyty imunologie MeSH
- termogeneze imunologie MeSH
- toll-like receptor 2 * metabolismus genetika imunologie MeSH
- zánět * imunologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The transient receptor potential vanilloid 1 (TRPV1) is well-established in neuronal function, yet its role in immune reactions remains enigmatic. The conflicting data on its inflammatory role, suggesting both pro-inflammatory and anti-inflammatory effects upon TRPV1 stimulation in immune cells, adds complexity. To unravel TRPV1 immunomodulatory mechanisms, we investigated how the TRPV1 agonist capsaicin influences lipopolysaccharide (LPS)-induced pro-inflammatory macrophage phenotypes. RESULTS: Changes in the surface molecules, cytokine production, and signaling cascades linked to the phenotype of M1 or M2 macrophages of the J774 macrophage cell line and bone marrow-derived macrophages, treated with capsaicin before or after the LPS-induced inflammatory reaction were determined. The functional capacity of macrophages was also assessed by infecting the stimulated macrophages with the intracellular parasite Leishmania mexicana. CONCLUSION: Our findings reveal that TRPV1 activation yields distinct macrophage responses influenced by the inflammatory context. LPS pre-treatment followed by capsaicin activation prompted increased calcium influx, accompanied by a shift toward an anti-inflammatory M2b-like polarization state.
- Publikační typ
- časopisecké články MeSH
An encounter of the developing immune system with an antigen results in the induction of immunological areactivity to this antigen. In the case of transplantation antigens, the application of allogeneic hematopoietic cells induces a state of neonatal transplantation tolerance. This tolerance depends on the establishment of cellular chimerism, when allogeneic cells survive in the neonatally treated recipient. Since mesenchymal stem/stromal cells (MSCs) have been shown to have low immunogenicity and often survive in allogeneic recipients, we attempted to use these cells for induction of transplantation tolerance. Newborn (less than 24 h old) C57BL/6 mice were injected intraperitoneally with 5 × 106 adipose tissue-derived MSCs isolated from allogeneic donors and the fate and survival of these cells were monitored. The impact of MSC application on the proportion of cell populations of the immune system and immunological reactivity was assessed. In addition, the survival of skin allografts in neonatally treated recipients was tested. We found that in vitro expanded MSCs did not survive in neonatal recipients, and the living MSCs were not detected few days after their application. Furthermore, there were no significant changes in the proportion of individual immune cell populations including CD4+ cell lineages, but we detected an apparent shift to the production of Th1 cytokines IL-2 and IFN-γ in neonatally treated mice. However, skin allografts in the MSC-treated recipients were promptly rejected. These results therefore show that in vitro expanded MSCs do not survive in neonatal recipients, but induce a cytokine imbalance without induction of transplantation tolerance.
- MeSH
- cytokiny MeSH
- interleukin-2 MeSH
- mezenchymální kmenové buňky * MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- novorozená zvířata MeSH
- transplantace mezenchymálních kmenových buněk * MeSH
- transplantační tolerance MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Immunomodulatory mechanisms of Sertoli cells (SCs) during phylogeny have not been described previously. This study attempted to reveal mechanisms of SC immune modulation in an evolutionary distant host. METHODS: The interaction of the SC cell line derived from Xenopus tropicalis (XtSC) with murine immune cells was studied in vivo and in vitro. The changes in the cytokine production, the intracellular and surface molecules expression on murine immune cells were evaluated after co-culturing with XtSCs. Migration of XtSCs in mouse recipients after intravenous application and subsequent changes in spleen and the testicular immune environment were determined by flow cytometry. RESULTS: The in vitro co-culture model was established, allowing the study of XtSCs interaction with murine immune cells. Intracellular staining of interleukin (IL-)10 revealed a significant increase in its expression in macrophages and B cells co-cultured with XtSCs, compared to both unstimulated cells and xenogeneic control. On the contrary, a significant decrease in Th lymphocytes expressing interferon-gamma was observed. The expression of both PD-1 ligands (PD-L1 and PD-L2) was upregulated on the macrophage surfaces after co-culture with XtSCs, but not with the controls. XtSCs migrated specifically to testes when administered intravenously and modulated systemic and local testicular microenvironment; this was detected by the expression of molecules associated with suppressive phenotype by CD45+ cells in both spleen and testes. CONCLUSION: We have demonstrated for the first time that SCs can migrate and modulate immune response in a phylogenetically distant host. It was further observed that SCs induce expression of molecules associated with immunosuppression, such as IL-10 and PD-1 ligands.
- MeSH
- antigeny CD274 MeSH
- antigeny CD279 * MeSH
- imunita MeSH
- interleukin-10 * MeSH
- ligandy MeSH
- modely nemocí na zvířatech MeSH
- myši MeSH
- Sertoliho buňky MeSH
- transplantace heterologní MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
It is becoming increasingly evident that selecting an optimal source of mesenchymal stromal cells (MSCs) is crucial for the successful outcome of MSC-based therapies. During the search for cells with potent regenerative properties, Sertoli cells (SCs) have been proven to modulate immune response in both in vitro and in vivo models. Based on morphological properties and expression of surface markers, it has been suggested that SCs could be a kind of MSCs, however, this hypothesis has not been fully confirmed. Therefore, we compared several parameters of MSCs and SCs, with the aim to evaluate the therapeutic potential of SCs in regenerative medicine. We showed that SCs successfully underwent osteogenic, chondrogenic and adipogenic differentiation and determined the expression profile of canonical MSC markers on the SC surface. Besides, SCs rescued T helper (Th) cells from undergoing apoptosis, promoted the anti-inflammatory phenotype of these cells, but did not regulate Th cell proliferation. MSCs impaired the Th17-mediated response; on the other hand, SCs suppressed the inflammatory polarisation in general. SCs induced M2 macrophage polarisation more effectively than MSCs. For the first time, we demonstrated here the ability of SCs to transfer mitochondria to immune cells. Our results indicate that SCs are a type of MSCs and modulate the reactivity of the immune system. Therefore, we suggest that SCs are promising candidates for application in regenerative medicine due to their anti-inflammatory and protective effects, especially in the therapies for diseases associated with testicular tissue inflammation.
- MeSH
- antiflogistika MeSH
- imunita MeSH
- lidé MeSH
- mezenchymální kmenové buňky * MeSH
- mitochondrie MeSH
- Sertoliho buňky * MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The successful application of mesenchymal stem cells (MSCs) remains a major challenge in stem cell therapy. Currently, several in vitro studies have indicated potentially beneficial interactions of MSCs with immunosuppressive drugs. These interactions can be even more complex in vivo, and it is in this setting that we investigate the effect of MSCs in combination with Cyclosporine A (CsA) on transplantation reaction and allogeneic cell survival. Using an in vivo mouse model, we found that CsA significantly promoted the survival of MSCs in various organs and tissues of the recipients. In addition, compared to treatment with CsA or MSCs alone, the survival of transplanted allogeneic cells was significantly improved after the combined application of MSCs with CsA. We further observed that the combinatory treatment suppressed immune response to the alloantigen challenge and modulated the immune balance by harnessing proinflammatory CD4+T-bet+ and CD4+RORγt+ cell subsets. These changes were accompanied by a significant decrease in IL-17 production along with an elevated level of IL-10. Co-cultivation of purified naive CD4+ cells with peritoneal macrophages isolated from mice treated with MSCs and CsA revealed that MSC-educated macrophages play an important role in the immunomodulatory effect observed on distinct T-cell subpopulations. Taken together, our findings suggest that CsA promotes MSC survival in vivo and that the therapeutic efficacy of the combination of MSCs with CsA is superior to each monotherapy. This combinatory treatment thus represents a promising approach to reducing immunosuppressant dosage while maintaining or even improving the outcome of therapy.
- MeSH
- alografty účinky léků imunologie MeSH
- cyklosporin farmakologie terapeutické užití MeSH
- cytokiny metabolismus MeSH
- imunosupresiva farmakologie terapeutické užití MeSH
- myši inbrední BALB C MeSH
- myši inbrední C57BL MeSH
- preklinické hodnocení léčiv MeSH
- přežívání štěpu účinky léků imunologie MeSH
- T-lymfocyty účinky léků metabolismus MeSH
- transplantace mezenchymálních kmenových buněk * MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH