RATIONALE: Heavy metals are both a problem for the environment and an important resource for industry. Their selective extraction by means of organic ligands therefore is an attractive topic. The coordination of three thiacrown ethers to late 3d-metal ions was investigated by a combination of electrospray ionization mass spectrometry (ESI-MS) and electron paramagnetic resonance (EPR). METHODS: The mass spectrometric experiments were carried out in an ion trap mass spectrometer with an ESI source. Absolute binding constants were estimated by comparison with data for 18-crown-6/Na(+). EPR spectroscopy was used as a complementary method for investigating the Cu(I) /Cu(II) redox couple. RESULTS: The study found that thiacrown ethers preferentially bind traces of copper even at an excess of other metal ions (Co(II), Ni(II), and Zn(II)). The absolute association constants of the Cu(I) complexes were about 10(8) M(-1), and about two orders of magnitude lower for the other 3d-metal cations. The EPR spectra demonstrated that the reduction from Cu(II) to Cu(I) upon formation of the [(thiacrown)Cu](+) species takes place in solution. CONCLUSIONS: ESI-MS demonstrated that the three thiacrown ligands examined had high binding constants as well as good selectivities for copper(I) at low concentrations, and in the presence of other metal ions. By a combination of ESI-MS and EPR spectrometry it was shown that the reduction from Cu(II) to Cu(I) occurred in solution.
- Publikační typ
- časopisecké články MeSH
Electrospray ionization was used as a technique for the characterization of the interactions between cadmium(II) ions and malic acid (1) in aqueous solution. Particular attention was paid to the nature of the species formed, which generally correspond to complexes of CdX(+) cations with neutral malic acid, where X either is the counterion of the metal salt used as a precursor (i.e. X=Cl, I) or corresponds to singly deprotonated malic acid. In pure water solutions, also highly coordinated complexes [Cd(1-H)(1)(2)](+) and [CdCl(1)(2)](+) were detected, whereas the most abundant complexes detected in a sample of soil solution were: [Cd(1-H)(1)](+) and [CdCl(1)](+). With respect to possible application in environmental analysis, the effects of (i) metal salts present in solution, (ii) modest mineralization, and (iii) the matrices of real soil solutions were probed. While the presence of other metals leads to additional complexes, the characteristic species containing both cadmium(II) and malic acid can still be detected with good sensitivity.
Electrospray ionization mass spectrometry (ESI-MS) is used to probe the complex formation between tebuconazole (1) and copper(II) salts, which both are commonly used fungicides in agriculture. Experiments with model solutions containing 1 and CuCl(2) reveal the initial formation of the copper(II) species [(1)CuCl](+) and [(1)(2)CuCl](+) which undergo reduction to the corresponding copper(I) ions [(1)Cu](+) and [(1)(2)Cu](+) under more drastic ionization conditions in the ESI source. In additional experiments, copper/tebuconazole complexes were also detected in samples made from soil solutions of various origin and different amount of mineralization. The direct sampling of such solutions via ESI-MS is thus potentially useful for understanding of the interactions between copper(II) salts and tebuconazole in environmental samples.
By means of selective deuterium labeling of 1-aza[6]helicene combined with resolution of the enantiomers, chiral discrimination in silver(I)-bound dimers of the type [LAgL']+ is probed by electrospray mass spectrometry. The analysis of the results reveals a pronounced preference for the formation of homochiral dimers (P,P and M,M, respectively) over the statistically preferred heterochiral variant (P,M), which is fully consistent with previous data about the formation of homochiral dimers in the condensed phase. Further, competitive experiments with mixtures of 1- and 2-aza[6]helicene suggest a largely preferred coordination of 1-aza[6]helicene to the silver(I) cation.
The mechanism of oxidative coupling of two naphthol molecules to form binaphthol catalyzed by Cu(OH)ClTMEDA (TMEDA=N,N,N',N'-tetramethylethylenediamine) was approached by means of a gas-phase model system. Concise evidence is provided that the coupling reaction proceeds in clusters with two Cu(II) centers, whereby the intermediacy of free naphthoxy radicals in the coupling step is avoided. In the absence of TMEDA, the cluster is bound via a bridging counterion and the coupling reaction is followed by cluster cleavage. The coordination of one or two TMEDA molecules to the reactive complex results in more efficient coupling of naphthol molecules, and moreover, the binuclear cluster is also conserved after the reaction is completed. The effect of TMEDA is twofold: First, it supports clustering of copper and, second, as a ligand bound to a copper center in the reactive complex, it weakens the bond between copper and the naphtholato ligand such that the naphtholato unit is more prone to undergo C--C coupling. Furthermore, a pronounced counterion effect is found that correlates well with condensed-phase data: weakly bridging counterions (e.g., NO3(-)) yield less stable dicopper clusters and the coupling reaction hardly occurs, whereas better bridging counterions (e.g., Cl(-) or Br(-)) provide more stable clusters that make the coupling reaction more efficient.
The bimolecular reactions of several hydrocarbon dications C(m)H(n)(2+) (m = 6-10, n = 4-9) with neutral benzene are investigated by tandem mass spectrometry using a multipole instrument. Not surprisingly, the major reaction of C(m)H(n)(2+) with benzene corresponds to electron transfer from the neutral arene to the dication resulting in the pair of monocationic products C(m)H(n)(+) + C(6)H(6)(+). In addition, also dissociative electron transfer takes place, whereas proton transfer from the C(m)H(n)(2+) dication to neutral benzene is almost negligible. Interestingly, the excess energy liberated upon electron transfer from the neutral arene to the C(m)H(n)(2+) dication is not equally partitioned in the monocationic products in that the cations arising from the dicationic precursor have a higher internal energy content than the monocations formed from the neutral reaction partner. In addition to the reactions leading to monocationic product ions, bond-forming reactions with maintenance of the two-fold charge are observed, which lead to a condensation of the C(m)H(n)(2+) dications with neutral benzene under formation of intermediate C(m+6)H(n+6)(2+) species and then undergo subsequent losses of molecular hydrogen or neutral acetylene. This reaction complements a recently proposed dicationic route for the formation of polycyclic aromatic hydrocarbons under extreme conditions such as they exist in interstellar environments.