Electrical storm (ES) is a state of electrical instability, manifesting as recurrent ventricular arrhythmias (VAs) over a short period of time (three or more episodes of sustained VA within 24 h, separated by at least 5 min, requiring termination by an intervention). The clinical presentation can vary, but ES is usually a cardiac emergency. Electrical storm mainly affects patients with structural or primary electrical heart disease, often with an implantable cardioverter-defibrillator (ICD). Management of ES requires a multi-faceted approach and the involvement of multi-disciplinary teams, but despite advanced treatment and often invasive procedures, it is associated with high morbidity and mortality. With an ageing population, longer survival of heart failure patients, and an increasing number of patients with ICD, the incidence of ES is expected to increase. This European Heart Rhythm Association clinical consensus statement focuses on pathophysiology, clinical presentation, diagnostic evaluation, and acute and long-term management of patients presenting with ES or clustered VA.
- MeSH
- Defibrillators, Implantable * MeSH
- Incidence MeSH
- Tachycardia, Ventricular * diagnosis therapy complications MeSH
- Humans MeSH
- Risk Factors MeSH
- Arrhythmias, Cardiac diagnosis therapy MeSH
- Heart Failure * complications MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Asia MeSH
The field of cardiac pacing has changed rapidly in the last several years. Since the initial description of His bundle pacing targeting the conduction system, recent advances in pacing the left bundle branch and its fascicles have evolved. The field and investigators' knowledge of conduction system pacing including relevant anatomy and physiology has advanced significantly. The aim of this review is to provide a comprehensive update on recent advances in conduction system pacing.
PURPOSE: Patients with ischemic cardiomyopathy (ICM) are prone to scar-related ventricular tachycardia (VT). The success of VT ablation depends on accurate arrhythmogenic substrate localization, followed by optimal delivery of energy provided by constant electrode-tissue contact. Current manual and remote magnetic navigation (RMN)-guided ablation strategies aim to identify a reentry circuit and to target a critical isthmus through activation and entrainment mapping during ongoing tachycardia. The MAGNETIC VT trial will assess if VT ablation using the Niobe™ ES magnetic navigation system results in superior outcomes compared to a manual approach in subjects with ischemic scar VT and low ejection fraction. METHODS AND RESULTS: This is a randomized, single-blind, prospective, multicenter post-market study. A total of 386 subjects (193 per group) will be enrolled and randomized 1:1 between treatment with the Niobe ES system and treatment via a manual procedure at up to 20 sites. The study population will consist of patients with ischemic cardiomyopathy with left ventricular ejection fraction (LVEF) of ≤35% and implantable cardioverter defibrillator (ICD) who have sustained monomorphic VT. The primary study endpoint is freedom from any recurrence of VT through 12 months. The secondary endpoints are acute success; freedom from any VT at 1 year in a large-scar subpopulation; procedure-related major adverse events; and mortality rate through 12-month follow-up. Follow-up will consist of visits at 3, 6, 9, and 12 months, all of which will include ICD interrogation. CONCLUSIONS: The MAGNETIC VT trial will help determine whether substrate-based ablation of VT with RMN has clinical advantages over manual catheter manipulation. TRIAL REGISTRATION: Clinicaltrials.gov identifier: NCT02637947.
- MeSH
- Adult MeSH
- Ventricular Dysfunction, Left diagnostic imaging etiology prevention & control MeSH
- Single-Blind Method MeSH
- Catheter Ablation methods MeSH
- Tachycardia, Ventricular complications diagnostic imaging surgery MeSH
- Middle Aged MeSH
- Humans MeSH
- Magnetics MeSH
- Body Surface Potential Mapping methods MeSH
- Adolescent MeSH
- Young Adult MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Stroke Volume MeSH
- Treatment Outcome MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Multicenter Study MeSH
- Randomized Controlled Trial MeSH
- Geographicals
- United States MeSH