Reprogramming of non-endocrine pancreatic cells into insulin-producing cells represents a promising therapeutic approach for the restoration of endogenous insulin production in diabetic patients. In this paper, we report that human organoid cells derived from the pancreatic tissue can be reprogrammed into the insulin-producing cells (IPCs) by the combination of in vitro transcribed modified mRNA encoding transcription factor neurogenin 3 and small molecules modulating the epigenetic state and signalling pathways. Upon the reprogramming, IPCs formed 4.6 ± 1.2 % of the total cells and expressed typical markers (insulin, glucokinase, ABCC8, KCNJ11, SLC2A2, SLC30A8) and transcription factors (PDX1, NEUROD1, MAFA, NKX2.2, NKX6.1, PAX4, PAX6) needed for the proper function of pancreatic β-cells. Additionally, we have revealed a positive effect of ALK5 inhibitor RepSox on the overall reprogramming efficiency. However, the reprogrammed IPCs possessed only a partial insulin-secretory capacity, as they were not able to respond to the changes in the extracellular glucose concentration by increasing insulin secretion. Based on the achieved results we conclude that due to the incomplete reprogramming, the IPCs have immature character and only partial properties of native human β-cells.
- MeSH
- antigen AC133 metabolismus MeSH
- beta-buňky cytologie účinky léků MeSH
- dospělí MeSH
- genetická transkripce účinky léků MeSH
- inzulin biosyntéza MeSH
- knihovny malých molekul farmakologie MeSH
- lidé MeSH
- messenger RNA genetika metabolismus MeSH
- organoidy cytologie MeSH
- přeprogramování buněk účinky léků genetika MeSH
- proliferace buněk MeSH
- proteiny nervové tkáně genetika metabolismus MeSH
- transkripční faktory bHLH genetika metabolismus MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Flax (Linum usitatissimum L.) is an important crop for the production of oil and fiber. In vitro manipulations of flax are used for genetic improvement and breeding while improvements in adventitious root formation are important for biotechnological programs focused on regeneration and vegetative propagation of genetically valuable plant material. Additionally, flax hypocotyl segments possess outstanding morphogenetic capacity, thus providing a useful model for the investigation of flax developmental processes. Here, we investigated the crosstalk between hydrogen peroxide and auxin with respect to reprogramming flax hypocotyl cells for root morphogenetic development. Exogenous auxin induced the robust formation of adventitious roots from flax hypocotyl segments while the addition of hydrogen peroxide further enhanced this process. The levels of endogenous auxin (indole-3-acetic acid; IAA) were positively correlated with increased root formation in response to exogenous auxin (1-Naphthaleneacetic acid; NAA). Histochemical staining of the hypocotyl segments revealed that hydrogen peroxide and peroxidase, but not superoxide, were positively correlated with root formation. Measurements of antioxidant enzyme activities showed that endogenous levels of hydrogen peroxide were controlled by peroxidases during root formation from hypocotyl segments. In conclusion, hydrogen peroxide positively affected flax adventitious root formation by regulating the endogenous auxin levels. Consequently, this agent can be applied to increase flax regeneration capacity for biotechnological purposes such as improved plant rooting.
- MeSH
- antioxidancia metabolismus MeSH
- biotechnologie MeSH
- hypokotyl účinky léků růst a vývoj metabolismus MeSH
- kořeny rostlin účinky léků růst a vývoj metabolismus MeSH
- kyseliny indoloctové metabolismus MeSH
- kyseliny naftalenoctové farmakologie MeSH
- len účinky léků růst a vývoj metabolismus MeSH
- peroxid vodíku metabolismus farmakologie MeSH
- přeprogramování buněk účinky léků MeSH
- regulátory růstu rostlin metabolismus farmakologie MeSH
- Publikační typ
- časopisecké články MeSH
Ectopic expression of defined sets of genetic factors can reprogramme somatic cells to induced pluripotent stem cells (iPSCs) that closely resemble embryonic stem cells. However, the low reprogramming efficiency is a significant handicap for mechanistic studies and potential clinical application. In this study, we used human bone marrow-derived mesenchymal stem cells (hBMMSCs) as target cells for reprogramming and investigated efficient iPSC generation from hBMMSCs using the compounds of p53 siRNA, valproic acid (VPA) and vitamin C (Vc) with four transcription factors OCT4, SOX2, KLF4, and c-MYC (compound induction system). The synergetic mechanism of the compounds was studied. Our results showed that the compound induction system could efficiently reprogramme hBMMSCs to iPSCs. hBMMSC-derived iPSC populations expressed pluripotent markers and had multi-potential to differentiate into three germ layer-derived cells. p53 siRNA, VPA and Vc had a synergetic effect on cell reprogramming and the combinatorial use of these substances greatly improved the efficiency of iPSC generation by suppressing the expression of p53, decreasing cell apoptosis, up-regulating the expression of the pluripotent gene OCT4 and modifying the cell cycle. Therefore, our study highlights a straightforward method for improving the speed and efficiency of iPSC generation and provides versatile tools for investigating early developmental processes such as haemopoiesis and relevant diseases. In addition, this study provides a paradigm for the combinatorial use of genetic factors and molecules to improve the efficiency of iPSC generation.
- MeSH
- biologické markery metabolismus MeSH
- buněčné kultury metody MeSH
- buněčný cyklus účinky léků genetika MeSH
- buňky kostní dřeně cytologie účinky léků metabolismus MeSH
- down regulace genetika účinky záření MeSH
- indukované pluripotentní kmenové buňky cytologie účinky léků metabolismus MeSH
- kyselina askorbová farmakologie MeSH
- kyselina valproová farmakologie MeSH
- lidé MeSH
- malá interferující RNA metabolismus MeSH
- mezenchymální kmenové buňky cytologie účinky léků metabolismus MeSH
- multipotentní kmenové buňky cytologie metabolismus MeSH
- myši inbrední ICR MeSH
- myši MeSH
- nádorový supresorový protein p53 metabolismus MeSH
- oktamerní transkripční faktor 3 genetika metabolismus MeSH
- přeprogramování buněk účinky léků genetika MeSH
- upregulace účinky léků genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH