OBJECTIVE: Nanomaterials consist of particles smaller than 100 nm - nanoparticles (NPs). Their nano dimensions allow them to penetrate through various membranes and enter into the bloodstream and disseminate into different body organs. Massive expansion of nanotechnologies together with production of new nanoparticles which have not yet been in contact with living organisms may pose a potential health problem. It is therefore necessary to investigate the health impact of NPs after experimental exposure. Comparison of the effect of TiO2 and NPs Fe3O4 in Wistar rats at time intervals 1, 7, 14 and 28 days was performed by studying the cytotoxic effect in the isolated inflammatory cells from bronchoalveolar lavage (BAL). METHODS: Wistar rats were intravenously (i.v.) given a suspension of NPs TiO2 or Fe3O4 (coated by sodium oleate) via the tail vein. After time intervals of 1, 7, 14 and 28 days, we sacrificed the animals under anaesthesia, performed BAL and isolated the cells. The number of animals in the individual groups was 7-8. We examined the differential count of BAL cells (alveolar macrophages - AM, polymorphonuclear leukocytes - PMN, lymphocytes - Ly); viability and phagocytic activity of AM; the proportion of immature and polynuclear cells and enzymes - cathepsin D - CAT D, lactate dehydrogenase - LDH and acid phosphatase - ACP. RESULTS: We found that TiO2 NPs are relatively inert - without induction of inflammatory and cytotoxic response. Exposure to nanoparticles Fe3O4 induced - under the same experimental conditions - in comparison with the control and TiO2 a more extensive inflammatory and cytotoxic response, albeit only at 1, 7 and 14 days after injection. CONCLUSIONS: The results suggest that TiO2 and Fe3O4 nanoparticles used in our study were transferred from the bloodstream to the respiratory tract, but this effect was not observed at 28 days after i.v. injection, probably due to their removal from the respiratory tract.
- MeSH
- intravenózní podání MeSH
- kovové nanočástice aplikace a dávkování toxicita MeSH
- krysa rodu rattus MeSH
- nemoci dýchací soustavy chemicky indukované MeSH
- oxid železnato-železitý aplikace a dávkování toxicita MeSH
- potkani Wistar MeSH
- titan aplikace a dávkování toxicita MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Iron oxide nanoparticles (IONPs) have a great potential with regard to cell labelling, cell tracking, cell separation, magnetic resonance imaging, magnetic hyperthermia, targeted drug and gene delivery. However, a growing body of research has raised concerns about the possible unwanted adverse cytotoxic effects of IONPs. In the present study, the in vitro cellular uptake, antiproliferative activity, cytotoxicity, genotoxicity, prooxidant, microtubule-disrupting and apoptosis-inducing effect of Fe3O4@SiO2 and passivated Fe3O4@SiO2-NH2 nanoparticles on human renal proximal tubule epithelial cells (HK-2) have been studied. Both investigated silica coated IONPs were found to have cell growth-inhibitory activity in a time- and dose-dependent manner. Determination of cell cycle phase distribution by flow cytometry demonstrated a G1 and G2/M phase accumulation of HK-2 cells. A tetrazolium salt cytotoxicity assay at 24 h following treatment demonstrated that cell viability was reduced in a dose-dependent manner. Microscopy observations showed that both Fe3O4@SiO2 and Fe3O4@SiO2-NH2 nanoparticles accumulated in cells and appeared to have microtubule-disrupting activity. Our study also revealed that short term 1 h exposure to 25 and 100 μg/mL of silica coated IONPs causes genotoxicity. Compared with vehicle control cells, a significantly higher amount of γH2AX foci correlating with an increase in DNA double-strand breaks was observed in Fe3O4@SiO2 and Fe3O4@SiO2-NH2-treated and immunestained HK-2 cells. The investigated nanoparticles did not trigger significant ROS generation and apoptosis-mediated cell death. In conclusion, these findings provide new insights into the cytotoxicity of silica coated IONPs that may support their further safer use.
- MeSH
- apoptóza účinky léků MeSH
- buněčné linie MeSH
- buněčný cyklus účinky léků MeSH
- dvouřetězcové zlomy DNA MeSH
- epitelové buňky účinky léků MeSH
- geny p53 MeSH
- histony genetika MeSH
- lidé MeSH
- magnetické nanočástice toxicita MeSH
- mikrotubuly účinky léků MeSH
- oxid křemičitý toxicita MeSH
- oxid železnato-železitý toxicita MeSH
- poškození DNA * MeSH
- povrchové vlastnosti MeSH
- proximální tubuly ledvin cytologie MeSH
- reaktivní formy kyslíku MeSH
- testy genotoxicity MeSH
- virová transformace buněk MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH