The biological electron transfer reactions play an important role in the bioactivity of drugs; thus, the knowledge of their electrochemical behavior is crucial. The formation of radicals during oxidation or reduction, the presence of short-living intermediates, the determination of reaction mechanisms involving electron and proton transfers, all contribute to the comprehension of drug activities and the determination of their mode of action and their metabolites. In addition, if a drug is encapsulated in the cyclodextrin cavity, its electrochemical properties can change compared to a free drug molecule. Here we describe the combination of cyclic voltammetry, UV-Vis spectroelectrochemistry, GC-MS, HPLC-DAD, and HPLC-MS/MS as techniques for evaluating the oxidation mechanism of a drug encapsulated in the cavity of a cyclodextrin. The cavity of cyclodextrin plays a significant role in increasing the stability of the encapsulated products; therefore the identification of oxidation intermediates as semiquinone and benzofuranone derivatives of quercetin is possible in these conditions. The differences in oxidation potentials of the bioactive flavonol quercetin and its cyclodextrin complex relating to its antioxidant activity and the oxidation mechanism are herein discussed.
Natural antioxidants, like phenolic acids, possess a unique chemical space that can protect cellular components from oxidative stress. However, their polar carboxylic acid chemotype reduces full intracellular antioxidant potential due to limited diffusion through biological membranes. Here, we have designed and developed a new generation of hydrophobic turn-on fluorescent antioxidant precursors that upon penetration of the cell membrane, reveal a more polar and more potent antioxidant core and simultaneously become fluorescent allowing their intracellular tracking. Their activation is stimulated by polarity alteration by sensing intracellular signals and specifically biothiols. In our design, the carboxylic group of phenolic acids that originally restricts cell entrance is derivatized and conjugated through Copper (I)-catalyzed azide-alkyne cycloaddition (CuAAC) to a coumarin derivative that its fluorescence properties are quenched with a biothiol activatable element. This more hydrophobic precursor readily penetrates cell membrane and once inside the cell the antioxidant core is revealed upon sensing glutathione, its fluorescence is restored in a turn-on manner and the generation of a more polar character traps the molecule inside the cell. This turn-on fluorescent antioxidant precursor that can be applied to phenolic acids, was developed for rosmarinic acid and the conjugate was named as RCG. The selectivity and responsiveness of RCG towards the most abundant biothiols was monitored through a variety of biophysical techniques including UV-Vis, fluorescence and NMR spectroscopy. The electrochemical behavior and free radical scavenging capacity of the precursor RCG and the active compound (RC) was evaluated and compared with the parent compound (rosmarinic acid) through cyclic voltammetry and EPR spectroscopy, respectively. The stability of the newly synthesized bioactive conjugate RC was found significantly higher than the parent rosmarinic acid when exposed to oxygen. Cell uptake experiments were conducted and revealed the internalization of RCG. The degree of intracellular DNA protection offered by RCG and its active drug (RC) on exposure to H2O2 was also evaluated in Jurkat cells.
New approaches to the synthesis of 4,7-dichloro-1,10-phenanthrolines and their corresponding 9H-carbazol-9-yl-, 10H-phenothiazin-10-yl- and pyrrolidin-1-yl derivatives were developed. Their properties have been characterized by a combination of several techniques: MS, HRMS, GC-MS, electronic absorption spectroscopy and multinuclear NMR in both solution and solid state including 15N CP/MAS NMR. The structures of 5-fluoro-2,9-dimethyl-4,7-di(pyrrolidin-1-yl)-1,10-phenanthroline (5d), 4,7-di(9H-carbazol-9-yl)-9-oxo-9,10-dihydro-1,10-phenanthroline-5-carbonitrile (6a) and 4,7-di(10H-phenothiazin-10-yl)-1,10-phenanthroline-5-carbonitrile (6b) were determined by single-crystal X-ray diffraction measurements. The nucleophilic substitutions of hydrogen followed by oxidation produced compounds 6a and 6b. The electrochemical properties of selected 1,10-phenanthrolines were investigated using cyclic voltammetry and compared with commercially available reference 1,10-phenanthrolin-5-amine (5l). The spatial distribution of frontier molecular orbitals of the selected compounds has been calculated by density functional theory (DFT). It was shown that potentials of reduction and oxidation were in consistence with the level of HOMO and LUMO energies.
Quercetin is one of the most prominent and widely studied flavonoids. Its oxidation has been previously investigated only indirectly by comparative analyses of structurally analogous compounds, e.g. dihydroquercetin (taxifolin). To provide direct evidence about the mechanism of quercetin oxidation, we employed selective alkylation procedures for the step-by-step blocking of individual redox active sites, i.e. the catechol, resorcinol and enol C-3 hydroxyls, as represented by newly prepared quercetin derivatives 1-3. Based on the structure-activity relationship (SAR), electrochemical, and computational (density functional theory) studies, we can clearly confirm that quercetin is oxidized in the following steps: the catechol moiety is oxidized first, forming the benzofuranone derivative via intramolecular rearrangement mechanism; therefore the quercetin C-3 hydroxy group cannot be involved in further oxidation reactions or other biochemical processes. The benzofuranone is oxidized subsequently, followed by oxidation of the resorcinol motif to complete the electrochemical cascade of reactions. Derivatization of individual quercetin hydroxyls has a significant effect on its redox behavior, and, importantly, on its antiradical and stability properties, as shown in DPPH/ABTS radical scavenging assays and UV-Vis spectrophotometry, respectively. The SAR data reported here are instrumental for future studies on the oxidation of biologically or technologically important flavonoids and other polyphenols or polyhydroxy substituted aromatics. This is the first complete and direct study mapping redox properties of individual moieties in quercetin structure.
BACKGROUND: Flavonoids possess a rich polypharmacological profile and their biological role is linked to their oxidation state protecting DNA from oxidative stress damage. However, their bioavailability is hampered due to their poor aqueous solubility. This can be surpassed through encapsulation to supramolecular carriers as cyclodextrin (CD). A quercetin- 2HP-β-CD complex has been formerly reported by us. However, once the flavonoid is in its 2HP-β-CD encapsulated state its oxidation potential, its decomplexation mechanism, its potential to protect DNA damage from oxidative stress remained elusive. To unveil this, an array of biophysical techniques was used. METHODS: The quercetin-2HP-β-CD complex was evaluated through solubility and dissolution experiments, electrochemical and spectroelectrochemical studies (Cyclic Voltammetry), UV-Vis spectroscopy, HPLC-ESI-MS/MS and HPLC-DAD, fluorescence spectroscopy, NMR Spectroscopy, theoretical calculations (density functional theory (DFT)) and biological evaluation of the protection offered against H2O2-induced DNA damage. RESULTS: Encapsulation of quercetin inside the supramolecule's cavity enhanced its solubility and retained its oxidation profile. Although the protective ability of the quercetin-2HP-β-CD complex against H2O2 was diminished, iron serves as a chemical stimulus to dissociate the complex and release quercetin. CONCLUSIONS: We found that in a quercetin-2HP-β-CD inclusion complex quercetin retains its oxidation profile similarly to its native state, while iron can operate as a chemical stimulus to release quercetin from its host cavity. GENERAL SIGNIFICANCE: The oxidation profile of a natural product once it is encapsulated in a supramolecular carrier was unveiled as also it was discovered that decomplexation can be triggered by a chemical stimilus.
- MeSH
- biologická dostupnost MeSH
- cyklodextriny chemie metabolismus MeSH
- Jurkat buňky MeSH
- lidé MeSH
- oxidace-redukce MeSH
- oxidační stres účinky léků MeSH
- oxidancia farmakologie MeSH
- peroxid vodíku farmakologie MeSH
- poškození DNA účinky léků MeSH
- quercetin chemie metabolismus MeSH
- železo chemie metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
The protective constituents of silymarin, an extract from Silybum marianum fruits, have been extensively studied in terms of their antioxidant and hepatoprotective activities. Here, we explore the electron-donor properties of the major silymarin flavonolignans. Silybin (SB), silychristin (SCH), silydianin (SD) and their respective 2,3-dehydroderivatives (DHSB, DHSCH and DHSD) were oxidized electrochemically and their antiradical/antioxidant properties were investigated. Namely, Folin-Ciocalteau reduction, DPPH and ABTS(+) radical scavenging, inhibition of microsomal lipid peroxidation and cytoprotective effects against tert-butyl hydroperoxide-induced damage to a human hepatocellular carcinoma HepG2 cell line were evaluated. Due to the presence of the highly reactive C3-OH group and the C-2,3 double bond (ring C) allowing electron delocalization across the whole structure in the 2,3-dehydroderivatives, these compounds are much more easily oxidized than the corresponding flavonolignans SB, SCH and SD. This finding was unequivocally confirmed not only by experimental approaches, but also by density functional theory (DFT) calculations. The hierarchy in terms of ability to undergo electrochemical oxidation (DHSCH~DHSD>DHSB>SCH/SD>SB) was consistent with their antiradical activities, mainly DPPH scavenging, as well as in vitro cytoprotection of HepG2 cells. The results are discussed in the context of the antioxidant vs. prooxidant activities of flavonolignans and molecular interactions in complex biological systems.
- MeSH
- antioxidancia farmakologie MeSH
- buňky Hep G2 MeSH
- cytoprotekce * MeSH
- elektronová paramagnetická rezonance MeSH
- flavonolignany chemie farmakologie MeSH
- krysa rodu rattus MeSH
- lidé MeSH
- silymarin farmakologie MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The natural flavonoid compounds quercetin (3,3',4',5,7-pentahydroxyflavone) and luteolin (3',4',5,7-tetrahydroxyflavone) are important bioactive compounds with antioxidative, anti-allergic, and anti-inflammatory properties. However, both are unstable when exposed to atmospheric oxygen, which causes degradation and complicates their analytical determinations. The oxidative change of these flavonoids was observed and followed by UV-visible spectrophotometry, both in aqueous and ethanolic solutions. The distribution of the degradation products in aqueous media was monitored by LC-MS and LC-DAD analysis. The amounts of oxidative reaction products increase with the exposure time. The oxidative degradation reduces the pharmacological efficiency of these antioxidants and renders analytical determination inaccurate. The oxidative changes in flavonoid test solutions can explain the inconsistent dissociation constants reported in the literature. Dissociation constants of quercetin and luteolin were determined both by alkalimetric titration and by UV-visible spectrophotometry under deaerated conditions. The values pK(1) = 5.87 ± 0.14 and pK(2) = 8.48 ± 0.09 for quercetin, and pK(1) = 5.99 ± 0.32 and pK(2) = 8.40 ± 0.42 for luteolin were found.
Cytotoxic properties of radiosensitizers are due to the fact that, in the metabolic pathway, these compounds undergo one-electron reduction to generate radical anions. In this study we focused our interest on the electrochemical transfer of the first electron on radiosensitizer Etanidazole (ETN) and, consequently, on the ETN radical-anion formation in the buffered aqueous media. ETN was electrochemically treated in the broad pH range at various scan rates. Three reduction peaks and one oxidation peak were found. At strong alkaline pH the four-electron reduction peak was separated into one-electron and three-electron reductions. Under these conditions the standard rate constant k(0) for the redox couple ETN-NO(2)+e(-) <--> ETN-NO(2)(*-) was calculated. Moreover, the value of a so called E(7)(1) potential that accounts for the energy necessary to transfer the first electron to an electroactive group at pH=7 in aqueous medium to form a radical anion was also determined. The obtained value of E(7)(1) indicates that lower energy compared to the other possible chemical radiosensitizers is necessary for the system to transfer the first electron to ETN. On the other hand, the necessity of the strong alkaline pH may decrease the ability of ETN to act as hypoxic radiosensitizer in the human body.
- MeSH
- anionty chemie MeSH
- elektrická vodivost MeSH
- elektrochemie MeSH
- etanidazol chemie MeSH
- hypoxie buňky MeSH
- kinetika MeSH
- koncentrace vodíkových iontů MeSH
- radiosenzibilizující látky chemie MeSH
- transport elektronů MeSH
- voda chemie MeSH
- volné radikály chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The oxidation mechanism of hematoxylin was studied in phosphate buffers and 0.1 M KCl by cyclic voltammetry and UV-Vis spectroscopy under deaerated conditions. The redox potential of hematoxylin in buffered solution strongly depends on pH. A two electron oxidation is preceded by deprotonation. The homogeneous rate of deprotonation process of hematoxylin in 0.1 M phosphate buffer is kd = (2.5 ± 0.1) × 104 s–1. The cyclic voltammetry under unbuffered conditions shows the distribution of various dissociation forms of hematoxylin. The dissociation constants pK1 = 4.7 ± 0.2 and pK2 = 9.6 ± 0.1 were determined using UV-Vis spectroscopy. The final oxidation product was identified by gas chromatography with mass spectrometry detection as hemathein. The distribution of oxidation products differs under buffered and unbuffered conditions. The dye degradation in natural unbuffered environment yields hemathein and hydroxyhematoxylin, which is absent in buffered solution.
Electrochemical transfer of the first electron to cytotoxic radiosensitizer etanidazole (ETN) and ETN radical anion formation in the alkaline buffered aqueous solution were studied by means of electrochemical impedance spectroscopy (EIS). The heterogeneous electron transfer rate constant for the first reduction of ETN (radical anion production), k0, was calculated. The value of k0 from EIS measurements and the previously obtained value of so-called E71 potential indicate that ETN, compared with other possible chemical radiosensitizers, requires lower energy to accept the first electron during the metabolic pathway. However, the necessity of the alkaline pH may decrease the ability of ETN to act as hypoxic radiosensitizer in the human body.