Boutet-Mercey, Stéphanie*
Dotaz
Zobrazit nápovědu
BACKGROUND: In seeds, the transition from dormancy to germination is regulated by abscisic acid (ABA) and gibberellins (GAs), and involves chromatin remodelling. Particularly, the repressive mark H3K27 trimethylation (H3K27me3) has been shown to target many master regulators of this transition. DAG1 (DOF AFFECTING GERMINATION1), is a negative regulator of seed germination in Arabidopsis, and directly represses the GA biosynthetic gene GA3ox1 (gibberellin 3-β-dioxygenase 1). We set to investigate the role of DAG1 in seed dormancy and maturation with respect to epigenetic and hormonal control. RESULTS: We show that DAG1 expression is controlled at the epigenetic level through the H3K27me3 mark during the seed-to-seedling transition, and that DAG1 directly represses also the ABA catabolic gene CYP707A2; consistently, the ABA level is lower while the GA level is higher in dag1 mutant seeds. Furthermore, both DAG1 expression and protein stability are controlled by GAs. CONCLUSIONS: Our results point to DAG1 as a key player in the control of the developmental switch between seed dormancy and germination.
- MeSH
- Arabidopsis růst a vývoj metabolismus MeSH
- DNA vazebné proteiny genetika metabolismus MeSH
- gibereliny metabolismus MeSH
- kyselina abscisová metabolismus MeSH
- proteiny huseníčku genetika metabolismus MeSH
- semena rostlinná genetika růst a vývoj metabolismus MeSH
- semenáček genetika růst a vývoj metabolismus MeSH
- transkripční faktory genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
Sugar has only recently been identified as a key player in triggering bud outgrowth, while hormonal control of bud outgrowth is already well established. To get a better understanding of sugar control, the present study investigated how sugar availability modulates the hormonal network during bud outgrowth in Rosa hybrida. Other plant models, for which mutants are available, were used when necessary. Buds were grown in vitro to manipulate available sugars. The temporal patterns of the hormonal regulatory network were assessed in parallel with bud outgrowth dynamics. Sucrose determined bud entrance into sustained growth in a concentration-dependent manner. Sustained growth was accompanied by sustained auxin production in buds, and sustained auxin export in a DR5::GUS-expressing pea line. Several events occurred ahead of sucrose-stimulated bud outgrowth. Sucrose upregulated early auxin synthesis genes (RhTAR1, RhYUC1) and the auxin efflux carrier gene RhPIN1, and promoted PIN1 abundance at the plasma membrane in a pPIN1::PIN1-GFP-expressing tomato line. Sucrose downregulated both RwMAX2, involved in the strigolactone-transduction pathway, and RhBRC1, a repressor of branching, at an early stage. The presence of sucrose also increased stem cytokinin content, but sucrose-promoted bud outgrowth was not related to that pathway. In these processes, several non-metabolizable sucrose analogues induced sustained bud outgrowth in R. hybrida, Pisum sativum, and Arabidopsis thaliana, suggesting that sucrose was involved in a signalling pathway. In conclusion, we identified potential hormonal candidates for bud outgrowth control by sugar. They are central to future investigations aimed at disentangling the processes that underlie regulation of bud outgrowth by sugar.
- MeSH
- biologický transport MeSH
- cytokininy metabolismus MeSH
- květy genetika růst a vývoj metabolismus MeSH
- kyseliny indoloctové metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- regulátory růstu rostlin metabolismus MeSH
- Rosa genetika růst a vývoj metabolismus MeSH
- rostlinné proteiny genetika metabolismus MeSH
- sacharosa metabolismus MeSH
- signální transdukce MeSH
- Publikační typ
- časopisecké články MeSH