"INTER EXCELLENCE"
Dotaz
Zobrazit nápovědu
BACKGROUND: Recently, multiple epidemiological studies have linked imatinib with the alteration of renal function in chronic myeloid leukaemia (CML) patients. This meta-analysis aimed to summarize the impact of imatinib use on renal function in CML patients. METHODS: A systematic search was conducted on MEDLINE and Embase to identify articles assessing the impact of imatinib exposure on renal function in CML patients. The risk of bias was assessed using the Newcastle-Ottawa scale (NOS). Two authors independently performed literature-screening, risk of bias and data extraction. The risk of renal dysfunction (chronic kidney disease or acute kidney injury) among imatinib users was computed as the primary outcome of interest. The certainty of findings was assessed using the grading of recommendations assessment, development and evaluation (GRADE) criteria. RESULTS: A total of nine articles qualified for inclusion in the systematic review, of which four articles were eligible for meta-analysis. Based on the scoring on NOS, majority of the included studies were found to be of moderate risk of bias. Majority of the studies (n = 6) reported significantly (p < .05) decrease in estimated glomerular filtration rate (eGFR) after imatinib treatment. The risk of developing renal dysfunction (chronic kidney disease or acute kidney injury) was found to be significantly higher in imatinib users as compared to other tyrosine kinase inhibitor (TKI) users with a pooled relative risk of 2.70 (95% CI: 1.49-4.91). Sensitivity analysis also revealed a consistently high risk of renal dysfunction with imatinib use. GRADE criteria revealed low certainty of evidence. CONCLUSION: This meta-analysis found an increased risk of renal dysfunction in imatinib users compared to other TKI users.
Acute kidney injury (AKI) is associated with several adverse outcomes, including new or progressive chronic kidney disease, end-stage kidney disease, and mortality. Epidemiological studies have reported an association between AKI and dementia as a long-term adverse outcome. This meta-analysis was aimed to understand the association between AKI and dementia risk. A literature search was performed in MEDLINE and Embase databases, from inception to July 2021, to identify epidemiological studies reporting the association between AKI and dementia risk. Title and abstract followed by the full-text of retrieved articles were screened, data were extracted, and quality was assessed, using the Newcastle-Ottawa scale by two investigators independently. The primary outcome was to compute the pooled risk of dementia in AKI patients. Subgroup analysis was also performed based on age and co-morbidities. Certainty of evidence was assessed using the GRADE approach. Statistical analysis was performed using Review Manager 5.4 software. Four studies (cohort (n = 3) and case-control (n = 1)) with a total of 429,211 patients, of which 211,749 had AKI, were identified. The mean age of the patients and the follow-up period were 64.15 ± 16.09 years and 8.9 years, respectively. Included studies were of moderate to high quality. The pooled estimate revealed a significantly higher risk of dementia in AKI patients with an overall relative risk/risk ratio (RR) of 1.92 (95% CI: 1.52-2.43), p ≤ 0.00001. Dementia risk increases by 10% with one year increase in age with an RR of 1.10 (95% CI: 1.09-1.11), p < 0.00001. Subgroup analysis based on stroke as a co-morbid condition also revealed significantly higher dementia risk in AKI patients (RR 2.30 (95% CI: 1.62-3.28), p = 0.009). All-cause mortality risk was also significantly higher in AKI patients with dementia with a pooled RR of 2.11 (95% CI: 1.20-3.70), p = 0.009. The strength of the evidence was of very low certainty as per the GRADE assessment. Patients with AKI have a higher risk of dementia. Further large epidemiological studies are needed to confirm the mechanistic association.
- Publikační typ
- časopisecké články MeSH
Mucormycosis, a serious and rare fungal infection, has recently been reported in COVID-19 patients worldwide. This study aims to map all the emerging evidence on the COVID-19-associated mucormycosis (CAM) with a special focus on clinical presentation, treatment modalities, and patient outcomes. An extensive literature search was performed in MEDLINE (Ovid), Embase (Ovid), Cochrane COVID-19 Study Register, and WHO COVID-19 database till 9 June 2021. The primary outcome was to summarize the clinical presentation, treatment modalities, and patient outcomes of CAM. Data were summarized using descriptive statistics and presented in tabular form. This evidence mapping was based on a total of 167 CAM patients with a mean age of 51 ± 14.62 years, and 56.28% of them were male. Diabetes mellitus (73.65% (n = 123)), hypertension (22.75% (n = 38)), and renal failure (10.77% (n = 18)) were the most common co-morbidities among CAM patients. The most common symptoms observed in CAM patients were facial pain, ptosis, proptosis, visual acuity, and vision loss. Survival was higher in patients who underwent both medical and surgical management (64.96%). Overall mortality among CAM patients was found to be 38.32%. In conclusion, this study found a high incidence of CAM with a high mortality rate. Optimal glycemic control and early identification of mucormycosis should be the priority to reduce the morbidity and mortality related to CAM.
- MeSH
- COVID-19 * MeSH
- diabetes mellitus * MeSH
- dospělí MeSH
- komorbidita MeSH
- lidé středního věku MeSH
- lidé MeSH
- mukormykóza * diagnóza epidemiologie terapie MeSH
- SARS-CoV-2 MeSH
- senioři MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
OBJECTIVES: Due to poor treatment adherence and lifestyle-based interventions, chronic hypertension is a dominant risk factor predisposing individuals to heart failure and malignant arrhythmias. We investigated the impact of the postnatal acclimation of hairless SHR to ambient temperature that is, for them, below thermoneutrality, on the electrical coupling protein connexin-43 (Cx43) and pro-fibrotic markers in both heart ventricles of male and female hairless SHR rats compared to the wild SHR. METHODS: Some 6-month-acclimated male and female hairless SHR as well as age- and sex-matched wild SHR were included and compared with the non-hypertensive Wistar strain. The left and right heart ventricles were examined for Cx43 topology, myocardial structure, and the histochemistry of capillaries. The protein levels of Cx43, relevant protein kinases, and extracellular matrix proteins (ECMs) were determined by immunoblotting. MMP-2 activity was assessed via zymography, and susceptibility to malignant arrhythmias was tested ex vivo. RESULTS: Cx43 and its phosphorylated variant pCx43368 were significantly reduced in the left heart ventricles of wild SHR males, while to a lesser extent in the hairless SHR. In contrast, these proteins were not significantly altered in the right heart ventricles of males or in both heart ventricles in females, regardless of the rat strain. Pro-arrhythmic Cx43 topology was detected in the left heart ventricle of wild SHR and to a lesser extent in hairless SHR males. TGFβ protein was significantly increased only in the left ventricle of the wild SHR males. MMP-2 activity was increased in the right ventricle but not in the left ventricles of both males and females, regardless of the rat strain. CONCLUSIONS: The findings indicate that the postnatal acclimation of hairless SHR to ambient temperature hampers the downregulation of Cx43 in the left heart ventricle compared to wild SHR males. The decline of Cx43 was much less pronounced in females and not observed in the right heart ventricles, regardless of the rat strain. It may impact the susceptibility of the heart to malignant arrhythmias.
- MeSH
- aklimatizace MeSH
- down regulace MeSH
- hypertenze * metabolismus MeSH
- konexin 43 * metabolismus genetika MeSH
- krysa rodu rattus MeSH
- potkani inbrední SHR * MeSH
- potkani Wistar MeSH
- srdeční arytmie * metabolismus etiologie MeSH
- srdeční komory * metabolismus MeSH
- teplota * MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Mycoviruses are viruses that infect fungi and are widespread across all major fungal taxa, exhibiting great biological diversity. Since their discovery in the 1960s, researchers have observed a myriad of fungal phenotypes altered due to mycoviral infection. In this review, we examine the nuanced world of mycoviruses in the context of the medically and agriculturally important fungal genus, Aspergillus. The advent of RNA sequencing has revealed a previous underestimate of viral prevalence in fungi, in particular linear single-stranded RNA viruses, and here we outline the diverse viral families known to date that contain mycoviruses infecting Aspergillus. Furthermore, we describe these novel mycoviruses, highlighting those with peculiar genome structures, such as a split RNA dependent RNA polymerase gene. Next, we delineate notable mycovirus-mediated phenotypes in Aspergillus, in particular reporting on observations of mycoviruses that affect their fungal host's virulence and explore how this may relate to virus-mediated decreased stress tolerance. Furthermore, mycovirus effects on microbial competition and antifungal resistance are discussed. The factors that influence the manifestation of these phenotypes, such as temperature, fungal life stage, and infection with multiple viruses, among others, are also evaluated. In addition, we attempt to elucidate the molecular mechanisms that underpin these phenotypes, examining how mycoviruses can be targets, triggers, and even suppressors of RNA silencing and how this can affect fungal gene expression and phenotypes. Finally, we highlight the potential therapeutic applications of mycoviruses and how, in an approach analogous to bacteriophage therapy, their ability to produce hypovirulence in Aspergillus might be used to attenuate invasive aspergillosis infections in humans.
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
BACKGROUND: Metabolomic analyses from our group and others have shown that tumors treated with glutamine antagonists (GA) exhibit robust accumulation of formylglycinamide ribonucleotide (FGAR), an intermediate in the de novo purine synthesis pathway. The increase in FGAR is attributed to the inhibition of the enzyme FGAR amidotransferase (FGAR-AT) that catalyzes the ATP-dependent amidation of FGAR to formylglycinamidine ribonucleotide (FGAM). While perturbation of this pathway resulting from GA therapy has long been recognized, no study has reported systematic quantitation and analyses of FGAR in plasma and tumors. OBJECTIVE: Herein, we aimed to evaluate the efficacy of our recently discovered tumor-targeted GA prodrug, GA-607 (isopropyl 2-(6-acetamido-2-(adamantane-1-carboxamido)hexanamido)-6-diazo-5-oxohexanoate), and demonstrate its target engagement by quantification of FGAR in plasma and tumors. METHODS: Efficacy and pharmacokinetics of GA-607 were evaluated in a murine EL4 lymphoma model followed by global tumor metabolomic analysis. Liquid chromatography-mass spectrometry (LC-MS) based methods employing the ion-pair chromatography approach were developed and utilized for quantitative FGAR analyses in plasma and tumors. RESULTS: GA-607 showed preferential tumor distribution and robust single-agent efficacy in a murine EL4 lymphoma model. While several metabolic pathways were perturbed by GA-607 treatment, FGAR showed the highest increase qualitatively. Using our newly developed sensitive and selective LC-MS method, we showed a robust >80- and >10- fold increase in tumor and plasma FGAR levels, respectively, with GA-607 treatment. CONCLUSION: These studies describe the importance of FGAR quantification following GA therapy in cancer and underscore its importance as a valuable pharmacodynamic marker in the preclinical and clinical development of GA therapies.
- MeSH
- biomarkery farmakologické analýza metabolismus MeSH
- chromatografie kapalinová metody MeSH
- glutamin antagonisté a inhibitory MeSH
- glycin analogy a deriváty analýza metabolismus MeSH
- hmotnostní spektrometrie metody MeSH
- metabolické sítě a dráhy účinky léků MeSH
- myši MeSH
- nádorové biomarkery analýza metabolismus MeSH
- nádory * farmakoterapie metabolismus MeSH
- ribonukleotidy * analýza metabolismus MeSH
- vyvíjení léků metody MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
OBJECTIVE: Miscarriages affect 10% of women aged 25-29, and 53% of women over 45. The primary cause of miscarriage is aneuploidy that originated in eggs. The Aurora kinase family has three members that regulate chromosome segregation. Therefore, distinguishing the roles of these isoforms is important to understand aneuploidy etiology. In meiosis, Aurora kinase A (AURKA) localizes to spindle poles, where it binds TPX2. Aurora kinase C (AURKC) localizes on chromosomes, where it replaces AURKB as the primary AURK in the chromosomal passenger complex (CPC) via INCENP binding. Although AURKA compensates for CPC function in oocytes lacking AURKB/C, it is unknown whether AURKA binds INCENP in wild type mouse oocytes. ZINC08918027 (ZC) is an inhibitor that prevents the interaction between AURKB and INCENP in mitotic cells. We hypothesized that ZC would block CPC function of any AURK isoform. RESULTS: ZC treatment caused defects in meiotic progression and spindle building. By Western blotting and immunofluorescence, we observed that activated AURKA and AURKC levels in ZC-treated oocytes decreased compared to controls. These results suggest there is a population of AURKA-CPC in mouse oocytes. These data together suggest that INCENP-dependent AURKA and AURKC activities are needed for spindle bipolarity and meiotic progression.
- MeSH
- aparát dělícího vřeténka metabolismus MeSH
- aurora kinasa B genetika metabolismus MeSH
- meióza * MeSH
- myši MeSH
- oocyty * metabolismus MeSH
- protein - isoformy genetika MeSH
- segregace chromozomů MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Three-dimensional (3D) cell cultures are to date the gold standard in biomedical research fields due to their enhanced biological functions compared to conventional two-dimensional (2D) cultures. 3D cell spheroids, as well as organoids, are better suited to replicate tissue functions, which enables their use both as in vitro models for basic research and toxicology, as well as building blocks used in tissue/organ biofabrication approaches. Culturing 3D spheroids from bone-derived cells is an emerging technology for both disease modelling and drug screening applications. Bone tissue models are mainly limited by the implementation of sophisticated devices and procedures that can foster a tissue-specific 3D cell microenvironment along with a dynamic cultivation regime. In this study, we consequently developed, optimized and characterized an advanced perfused microfluidic platform to improve the reliability of 3D bone cell cultivation and to enhance aspects of bone tissue maturation in vitro. Moreover, biomechanical stimulation generated by fluid flow inside the arrayed chamber, was used to mimic a more dynamic cell environment emulating a highly vascularized bone we expected to improve the osteogenic 3D microenvironment in the developed multifunctional spheroid-array platform. The optimized 3D cell culture protocols in our murine bone-on-a-chip spheroid model exhibited increased mineralization and viability compared to static conditions. As a proof-of-concept, we successfully confirmed on the beneficial effects of a dynamic culture environment on osteogenesis and used our platform for analysis of bone-derived spheroids produced from primary human pre-osteoblasts. To conclude, the newly developed system represents a powerful tool for studying human bone patho/physiology in vitro under more relevant and dynamic culture conditions converging the advantages of microfluidic platforms with multi-spheroid array technologies.
- Publikační typ
- časopisecké články MeSH
During development, tooth germs undergo various morphological changes resulting from interactions between the oral epithelium and ectomesenchyme. These processes are influenced by the extracellular matrix, the composition of which, along with cell adhesion and signaling, is regulated by metalloproteinases. Notably, these include matrix metalloproteinases (MMPs), a disintegrin and metalloproteinases (ADAMs), and a disintegrin and metalloproteinases with thrombospondin motifs (ADAMTSs). Our analysis of previously published scRNAseq datasets highlight that these metalloproteinases show dynamic expression patterns during tooth development, with expression in a wide range of cell types, suggesting multiple roles in tooth morphogenesis. To investigate this, Marimastat, a broad-spectrum inhibitor of MMPs, ADAMs, and ADAMTSs, was applied to ex vivo cultures of mouse molar tooth germs. The treated samples exhibited significant changes in tooth germ size and morphology, including an overall reduction in size and an inversion of the typical bell shape. The cervical loop failed to extend, and the central area of the inner enamel epithelium protruded. Marimastat treatment also disrupted proliferation, cell polarization, and organization compared with control tooth germs. In addition, a decrease in laminin expression was observed, leading to a disruption in continuity of the basement membrane at the epithelial-mesenchymal junction. Elevated hypoxia-inducible factor 1-alpha gene (Hif-1α) expression correlated with a disruption to blood vessel development around the tooth germs. These results reveal the crucial role of metalloproteinases in tooth growth, shape, cervical loop elongation, and the regulation of blood vessel formation during prenatal tooth development.NEW & NOTEWORTHY Inhibition of metalloproteinases during tooth development had a wide-ranging impact on molar growth affecting proliferation, cell migration, and vascularization, highlighting the diverse role of these proteins in controlling development.
- MeSH
- faktor 1 indukovatelný hypoxií - podjednotka alfa metabolismus genetika MeSH
- inhibitory matrixových metaloproteinas farmakologie MeSH
- kyseliny hydroxamové farmakologie MeSH
- metaloproteasy metabolismus genetika MeSH
- moláry embryologie růst a vývoj metabolismus enzymologie MeSH
- morfogeneze MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- odontogeneze * MeSH
- proliferace buněk * MeSH
- vývojová regulace genové exprese MeSH
- zubní zárodek embryologie metabolismus enzymologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Here, we provide evidence for the presence of Myosin phosphatase rho-interacting protein (MPRIP), an F-actin-binding protein, in the cell nucleus. The MPRIP protein binds to Phosphatidylinositol 4,5-bisphosphate (PIP2) and localizes to the nuclear speckles and nuclear lipid islets which are known to be involved in transcription. We identified MPRIP as a component of RNA Polymerase II/Nuclear Myosin 1 complex and showed that MPRIP forms phase-separated condensates which are able to bind nuclear F-actin fibers. Notably, the fibrous MPRIP preserves its liquid-like properties and reforms the spherical shaped condensates when F-actin is disassembled. Moreover, we show that the phase separation of MPRIP is driven by its long intrinsically disordered region at the C-terminus. We propose that the PIP2/MPRIP association might contribute to the regulation of RNAPII transcription via phase separation and nuclear actin polymerization.
- MeSH
- adaptorové proteiny signální transdukční chemie metabolismus MeSH
- aktiny metabolismus MeSH
- buněčné jádro účinky léků metabolismus MeSH
- fosfatidylinositol-4,5-difosfát metabolismus MeSH
- glykoly farmakologie MeSH
- lidé MeSH
- myosin typu I metabolismus MeSH
- nádorové buněčné linie MeSH
- proteinové domény MeSH
- RNA-polymerasa II metabolismus MeSH
- subcelulární frakce metabolismus MeSH
- vazba proteinů účinky léků MeSH
- zelené fluorescenční proteiny metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH