We studied the disinfection efficacy of boron-doped electrodes on Escherichia coli-contaminated water-based solutions in three different electrolytes, physiological solution (NaCl), phosphate buffer (PB), and phosphate buffer saline (PBS). The effect of the electrochemical oxidation treatment on the bacteria viability was studied by drop and spread plate cultivation methods, and supported by optical density measurements. We have found that bacterial suspensions in NaCl and PBS underwent a total inactivation of all viable bacteria within 10 min of the electrochemical treatment. By contrast, experiments performed in the PB showed a relatively minor decrease of viability by two orders of magnitude after 2 h of the treatment, which is almost comparable with the untreated control. The enhanced bacterial inactivation was assigned to reactive chlorine species, capable of penetrating the bacterial cytoplasmic membrane and killing bacteria from within.
The diffusion of biologically active molecules is a ubiquitous process, controlling many mechanisms and the characteristic time scales for pivotal processes in living cells. Here, we show how a high static magnetic field (MF) affects the diffusion of paramagnetic and diamagnetic species including oxygen, hemoglobin, and drugs. We derive and solve the equation describing diffusion of such biologically active molecules in the presence of an MF as well as reveal the underlying mechanism of the MF's effect on diffusion. We found that a high MF accelerates diffusion of diamagnetic species while slowing the diffusion of paramagnetic molecules in cell cytoplasm. When applied to oxygen and hemoglobin diffusion in red blood cells, our results suggest that an MF may significantly alter the gas exchange in an erythrocyte and cause swelling. Our prediction that the diffusion rate and characteristic time can be controlled by an MF opens new avenues for experimental studies foreseeing numerous biomedical applications.
The increasing incidence of trauma in medicine brings with it new demands on the materials used for the surgical treatment of bone fractures. Titanium, its alloys, and steel are used worldwide in the treatment of skeletal injuries. These metallic materials, although inert, are often removed after the injured bone has healed. The second-stage procedure-the removal of the plates and screws-can overwhelm patients and overload healthcare systems. The development of suitable absorbable metallic materials would help us to overcome these issues. In this experimental study, we analyzed an extruded Zn-0.8Mg-0.2Sr (wt.%) alloy on a rabbit model. From this alloy we developed screws which were implanted into the rabbit tibia. After 120, 240, and 360 days, we tested the toxicity at the site of implantation and also within the vital organs: the liver, kidneys, and brain. The results were compared with a control group, implanted with a Ti-based screw and sacrificed after 360 days. The samples were analyzed using X-ray, micro-CT, and a scanning electron microscope. Chemical analysis revealed only small concentrations of zinc, strontium, and magnesium in the liver, kidneys, and brain. Histologically, the alloy was verified to possess very good biocompatibility after 360 days, without any signs of toxicity at the site of implantation. We did not observe raised levels of Sr, Zn, or Mg in any of the vital organs when compared with the Ti group at 360 days. The material was found to slowly degrade in vivo, forming solid corrosion products on its surface.
- MeSH
- Tibial Fractures * metabolism surgery MeSH
- Magnesium chemistry pharmacokinetics pharmacology MeSH
- Rabbits MeSH
- Humans MeSH
- Alloys * chemistry pharmacokinetics pharmacology MeSH
- Strontium chemistry pharmacokinetics pharmacology MeSH
- Materials Testing * MeSH
- Tibia metabolism pathology MeSH
- Absorbable Implants * MeSH
- Zinc chemistry pharmacokinetics pharmacology MeSH
- Animals MeSH
- Check Tag
- Rabbits MeSH
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Biological effects of high fluence low-power (HFLP) lasers have been reported for some time, yet the molecular mechanisms procuring cellular responses remain obscure. A better understanding of the effects of HFLP lasers on living cells will be instrumental for the development of new experimental and therapeutic strategies. Therefore, we investigated sub-cellular mechanisms involved in the laser interaction with human hepatic cell lines. We show that mitochondria serve as sub-cellular "sensor" and "effector" of laser light non-specific interactions with cells. We demonstrated that despite blue and red laser irradiation results in similar apoptotic death, cellular signaling and kinetic of biochemical responses are distinct. Based on our data, we concluded that blue laser irradiation inhibited cytochrome c oxidase activity in electron transport chain of mitochondria. Contrary, red laser triggered cytochrome c oxidase excessive activation. Moreover, we showed that Bcl-2 protein inhibited laser-induced toxicity by stabilizing mitochondria membrane potential. Thus, cells that either overexpress or have elevated levels of Bcl-2 are protected from laser-induced cytotoxicity. Our findings reveal the mechanism how HFLP laser irradiation interfere with cell homeostasis and underscore that such laser irradiation permits remote control of mitochondrial function in the absence of chemical or biological agents.
- MeSH
- Apoptosis radiation effects MeSH
- Hep G2 Cells MeSH
- Phototherapy * MeSH
- Low-Level Light Therapy * MeSH
- Humans MeSH
- Membrane Potential, Mitochondrial genetics radiation effects MeSH
- Mitochondrial Membranes metabolism radiation effects MeSH
- Mitochondria genetics radiation effects MeSH
- Oxidation-Reduction radiation effects MeSH
- Reactive Oxygen Species metabolism MeSH
- Gene Expression Regulation radiation effects MeSH
- Electron Transport Complex IV genetics MeSH
- Electron Transport genetics radiation effects MeSH
- Cell Survival genetics radiation effects MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
The emerged field of non-thermal plasma (NTP) shows great potential in the alteration of cell redox status, which can be utilized as a promising therapeutic implication. In recent years, the NTP field considerably progresses in the modulation of immune cell function leading to promising in vivo results. In fact, understanding the underlying cellular mechanisms triggered by NTP remains incomplete. In order to boost the field closer to real-life clinical applications, there is a need for a critical overview of the current state-of-the-art. In this review, we conduct a critical analysis of the NTP-triggered modulation of immune cells. Importantly, we analyze pitfalls in the field and identify persisting challenges. We show that the identification of misconceptions opens a door to the development of a research strategy to overcome these limitations. Finally, we propose the idea that solving problems highlighted in this review will accelerate the clinical translation of NTP-based treatments.
- MeSH
- Immunity, Cellular drug effects MeSH
- Humans MeSH
- Plasma Gases pharmacology MeSH
- Gene Expression Regulation drug effects MeSH
- Signal Transduction drug effects MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Lysosome-activated apoptosis represents an alternative method of overcoming tumor resistance compared to traditional forms of treatment. Pulsed magnetic fields open a new avenue for controlled and targeted initiation of lysosomal permeabilization in cancer cells via mechanical actuation of magnetic nanomaterials. In this study we used a noninvasive tool; namely, a benchtop pulsed magnetic system, which enabled remote activation of apoptosis in liver cancer cells. The magnetic system we designed represents a platform that can be used in a wide range of biomedical applications. We show that liver cancer cells can be loaded with superparamagnetic iron oxide nanoparticles (SPIONs). SPIONs retained in lysosomal compartments can be effectively actuated with a high intensity (up to 8 T), short pulse width (~15 µs), pulsed magnetic field (PMF), resulting in lysosomal membrane permeabilization (LMP) in cancer cells. We revealed that SPION-loaded lysosomes undergo LMP by assessing an increase in the cytosolic activity of the lysosomal cathepsin B. The extent of cell death induced by LMP correlated with the accumulation of reactive oxygen species in cells. LMP was achieved for estimated forces of 700 pN and higher. Furthermore, we validated our approach on a three-dimensional cellular culture model to be able to mimic in vivo conditions. Overall, our results show that PMF treatment of SPION-loaded lysosomes can be utilized as a noninvasive tool to remotely induce apoptosis.
- Publication type
- Journal Article MeSH