A number of recently described renal tumor entities share an eosinophilic/oncocytic morphology, somewhat solid architectural growth pattern, and tendency to present as low-stage tumors. The vast majority of such tumors follow a non-aggressive clinical behavior. In this review, we discuss the morphological, immunohistochemical, and molecular genetic profiles of the three most recent novel/emerging renal entities associated with TSC/mTOR pathway mutations. These are eosinophilic solid and cystic renal cell carcinoma, eosinophilic vacuolated tumors, and low-grade oncocytic tumors, which belong to a heterogeneous group of renal tumors, demonstrating mostly solid architecture, eosinophilic/oncocytic cytoplasm, and overlapping morphological and immunohistochemical features between renal oncocytoma and chromophobe renal cell carcinoma. All three tumors also share a molecular genetic background with mutations in the mTORC1 pathway (TSC1/TSC2/mTOR/RHEB). Despite the common genetic background, it appears that the tumors with TSC/mTOR mutations represent a diverse group of distinct renal neoplasms.
- Publication type
- Journal Article MeSH
- Review MeSH
Neural stem cells are fundamental to development of the central nervous system (CNS)-as well as its plasticity and regeneration-and represent a potential tool for neuro transplantation therapy and research. This study is focused on examination of the proliferation dynamic and fate of embryonic neural stem cells (eNSCs) under differentiating conditions. In this work, we analyzed eNSCs differentiating alone and in the presence of sonic hedgehog (SHH) or triiodothyronine (T3) which play an important role in the development of the CNS. We found that inhibition of the SHH pathway and activation of the T3 pathway increased cellular health and survival of differentiating eNSCs. In addition, T3 was able to increase the expression of the gene for the receptor smoothened (Smo), which is part of the SHH signaling cascade, while SHH increased the expression of the T3 receptor beta gene (Thrb). This might be the reason why the combination of SHH and T3 increased the expression of the thyroxine 5-deiodinase type III gene (Dio3), which inhibits T3 activity, which in turn affects cellular health and proliferation activity of eNSCs.
- MeSH
- Iodide Peroxidase genetics metabolism MeSH
- Cells, Cultured MeSH
- Mouse Embryonic Stem Cells cytology metabolism MeSH
- Mice, Inbred C57BL MeSH
- Mice MeSH
- Neural Stem Cells cytology metabolism MeSH
- Neurogenesis * MeSH
- Hedgehog Proteins genetics metabolism MeSH
- Smoothened Receptor genetics metabolism MeSH
- Triiodothyronine metabolism MeSH
- Thyroid Hormone Receptors beta genetics metabolism MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
BACKGROUND: The effect of premorbid β-blocker exposure on clinical outcomes in patients with sepsis is not well characterized. We aimed to examine the association between premorbid β-blocker exposure and mortality in sepsis. METHODS: EMBase, MEDLINE, and Cochrane databases were searched for all studies of premorbid β-blocker and sepsis. The search was last updated on 22 June 2019. Two reviewers independently assessed, selected, and abstracted data from studies reporting chronic β-blocker use prior to sepsis and mortality. Main data extracted were premorbid β-blocker exposure, mortality, study design, and patient data. Two reviewers independently assessed the risk of bias and quality of evidence. RESULTS: In total, nine studies comprising 56,414 patients with sepsis including 6576 patients with premorbid exposure to β-blockers were eligible. For the primary outcome of mortality, two retrospective studies reported adjusted odds ratios showing a reduction in mortality with premorbid β-blocker exposure. One study showed that premorbid β-blocker exposure decreases mortality in patients with septic shock. Another study showed that continued β-blockade during sepsis is associated with decreased mortality. CONCLUSION: This systematic review suggests that β-blocker exposure prior to sepsis is associated with reduced mortality. There was insufficient data to conduct a bona fide meta-analysis. Whether the apparent reduction in mortality may be attributed to the mitigation of catecholamine excess is unclear. TRIAL REGISTRATION: PROSPERO, CRD42019130558 registered June 12, 2019.