Bio-layer interferometry
Dotaz
Zobrazit nápovědu
The determination of a suitable buffer environment for a protein of interest is not an easy task. The requirements of advanced techniques, the demands on the biological material and the researcher time needed for buffer optimization, as well as personal inflexibility, lead frequently to the use of sub-optimal buffers. Here, we demonstrate the design of a 48-condition buffer screen that can be used to determine an appropriate environment for downstream studies. By the combination of several techniques (differential scanning fluorimetry, dynamic light scattering, and bio-layer interferometry), we are able to assess the protein stability, homogeneity and binding activity across the screen with less than half a milligram of protein in 1 day. The application of this screen helps to avoid unsuitable conditions, to explain problems observed upon protein analysis and to choose the most suitable buffers for further research. The screen can be routinely used as a primary screen for buffer optimization in labs and facilities.
- MeSH
- dynamický rozptyl světla MeSH
- fluorometrie MeSH
- proteiny MeSH
- pufry MeSH
- stabilita proteinů * MeSH
- Publikační typ
- časopisecké články MeSH
Contactin-associated protein-like 2 (CNTNAP2) encodes for CASPR2, a multidomain single transmembrane protein belonging to the neurexin superfamily that has been implicated in a broad range of human phenotypes including autism and language impairment. Using a combination of biophysical techniques, including small angle x-ray scattering, single particle electron microscopy, analytical ultracentrifugation, and bio-layer interferometry, we present novel structural and functional data that relate the architecture of the extracellular domain of CASPR2 to a previously unknown ligand, Contactin1 (CNTN1). Structurally, CASPR2 is highly glycosylated and has an overall compact architecture. Functionally, we show that CASPR2 associates with micromolar affinity with CNTN1 but, under the same conditions, it does not interact with any of the other members of the contactin family. Moreover, by using dissociated hippocampal neurons we show that microbeads loaded with CASPR2, but not with a deletion mutant, co-localize with transfected CNTN1, suggesting that CNTN1 is an endogenous ligand for CASPR2. These data provide novel insights into the structure and function of CASPR2, suggesting a complex role of CASPR2 in the nervous system.
- MeSH
- difrakce rentgenového záření MeSH
- HEK293 buňky MeSH
- hipokampus cytologie metabolismus MeSH
- kontaktin 1 metabolismus MeSH
- kultivované buňky MeSH
- lidé MeSH
- maloúhlový rozptyl MeSH
- mapy interakcí proteinů MeSH
- membránové proteiny chemie metabolismus ultrastruktura MeSH
- molekulární modely MeSH
- myši inbrední C57BL MeSH
- proteiny nervové tkáně chemie metabolismus ultrastruktura MeSH
- terciární struktura proteinů MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
The seven-transmembrane-spanning receptors of the FZD1-10 class are bound and activated by the WNT family of lipoglycoproteins, thereby inducing a complex network of signaling pathways. However, the specificity of the interaction between mammalian WNT and FZD proteins and the subsequent signaling cascade downstream of the different WNT-FZD pairs have not been systematically addressed to date. In this study, we determined the binding affinities of various WNTs for different members of the FZD family by using bio-layer interferometry and characterized their functional selectivity in a cell system. Using purified WNTs, we show that different FZD cysteine-rich domains prefer to bind to distinct WNTs with fast on-rates and slow off-rates. In a 32D cell-based system engineered to overexpress FZD2, FZD4, or FZD5, we found that WNT-3A (but not WNT-4, -5A, or -9B) activated the WNT-β-catenin pathway through FZD2/4/5 as measured by phosphorylation of LRP6 and β-catenin stabilization. Surprisingly, different WNT-FZD pairs showed differential effects on phosphorylation of DVL2 and DVL3, revealing a previously unappreciated DVL isoform selectivity by different WNT-FZD pairs in 32D cells. In summary, we present extensive mapping of WNT-FZD cysteine-rich domain interactions complemented by analysis of WNT-FZD pair functionality in a unique cell system expressing individual FZD isoforms. Differential WNT-FZD binding and selective functional readouts suggest that endogenous WNT ligands evolved with an intrinsic natural bias toward different downstream signaling pathways, a phenomenon that could be of great importance in the design of FZD-targeting drugs.
- MeSH
- beta-katenin metabolismus MeSH
- buněčné linie MeSH
- fosforylace MeSH
- frizzled receptory metabolismus MeSH
- mapování interakce mezi proteiny MeSH
- mapy interakcí proteinů * MeSH
- myši MeSH
- protein - isoformy metabolismus MeSH
- proteiny Wnt metabolismus MeSH
- signální dráha Wnt * MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Intramural MeSH