Chlorophyll fluorescence kinetics Dotaz Zobrazit nápovědu
Chlorophyll fluorescence kinetic analysis has become an important tool in basic and applied research on plant physiology and agronomy. While early systems recorded the integrated kinetics of a selected spot or plant, later systems enabled imaging of at least the slower parts of the kinetics (20-ms time resolution). For faster events, such as the rise from the basic dark-adapted fluorescence yield to the maximum (OJIP transient), or the fluorescence yield decrease during reoxidation of plastoquinone A after a saturating flash, integrative systems are used because of limiting speed of the available imaging systems. In our new macroscopic and microscopic systems, the OJIP or plastonique A reoxidation fluorescence transients are directly imaged using an ultrafast camera. The advantage of such systems compared to nonimaging measurements is the analysis of heterogeneity of measured parameters, for example between the photosynthetic tissue near the veins and the tissue further away from the veins. Further, in contrast to the pump-and-probe measurement, direct imaging allows for measuring the transition of the plant from the dark-acclimated to a light-acclimated state via a quenching analysis protocol in which every supersaturating flash is coupled to a measurement of the fast fluorescence rise. We show that pump-and-probe measurement of OJIP is prone to artifacts, which are eliminated with the direct measurement. The examples of applications shown here, zinc deficiency and cadmium toxicity, demonstrate that this novel imaging platform can be used for detection and analysis of a range of alterations of the electron flow around PSII.
- MeSH
- Arabidopsis cytologie metabolismus MeSH
- Brassicaceae cytologie účinky léků metabolismus MeSH
- chlorofyl chemie metabolismus MeSH
- design vybavení MeSH
- fluorescence MeSH
- fluorescenční mikroskopie přístrojové vybavení metody MeSH
- fotosyntéza MeSH
- Glycine max cytologie účinky léků metabolismus MeSH
- kinetika MeSH
- listy rostlin cytologie MeSH
- mezofylové buňky metabolismus MeSH
- plastochinon metabolismus MeSH
- zinek metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Diatoms are especially important microorganisms because they constitute the larger group of microalgae. To survive the constant variations of the light environment, diatoms have developed mechanisms aiming at the dissipation of excess energy, such as the xanthophyll cycle and the non-photochemical chlorophyll (Chl) fluorescence quenching. This contribution is dedicated to the relaxation of the latter process when the adverse conditions cease. An original nonlinear regression analysis of the relaxation of non-photochemical Chl fluorescence quenching, qN, in diatoms is presented. It was used to obtain experimental evidence for the existence of three time-resolved components in the diatom Phaeodactylum tricornutum: qNf, qNi and qNs. qNf (s time-scale) and qNs (h time-scale) are exponential in shape. By contrast, qNi (min time-scale) is of sigmoidal nature and is dominant among the three components. The application of metabolic inhibitors (dithiothreitol, ammonium chloride, cadmium and diphenyleneiodonium chloride) allowed the identification of the mechanisms on which each component mostly relies. qNi is linked to the relaxation of the ΔpH gradient and the reversal of the xanthophyll cycle. qNs quantifies the stage of photoinhibition caused by the high light exposure, qNf seems to reflect fast conformational changes within thylakoid membranes in the vicinity of the photosystem II complexes.
- MeSH
- časové faktory MeSH
- chlorid amonný MeSH
- chlorofyl metabolismus účinky záření MeSH
- dithiothreitol MeSH
- fluorescence MeSH
- fotosystém II - proteinový komplex metabolismus MeSH
- kadmium MeSH
- kinetika MeSH
- oniové sloučeniny MeSH
- regresní analýza MeSH
- rozsivky fyziologie MeSH
- světlo * MeSH
- tylakoidy metabolismus MeSH
- xanthofyly metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Lichens survive harsh weather of Antarctica as well as of other hostile environments worldwide. Therefore, this investigation is important to understand the evolution of life on Earth in relation to their stress tolerance strategy. We have used chlorophyll a fluorescence (ChlF) and Raman spectroscopy, respectively, to monitor the activation/deactivation of photosynthesis and carotenoids in three diverse Antarctic lichens, Dermatocarpon polyphyllizum (DP), Umbilicaria antarctica (UA), and Leptogium puberulum (LP). These lichens, post 4 h or 24 h of hydration, showed differences in their ChlF transients and values of major ChlF parameters, e.g., in the maximum quantum efficiency of PSII photochemistry (Fv/Fm), and yields of fluorescence and heat dissipation (Φf,d), of effective quantum efficiency of PSII photochemistry (ΦPSII) and of non-photochemical quenching (Φnpq), which may be due to quantitative and/or qualitative differences in the composition of their photobionts. For understanding the kinetics of hydration-induced activation of photosynthesis, we screened ΦPSII of these lichens and reported its non-linear stimulation on a minute time scale; half of the activation time (t1/2) was fastest ~4.05 ± 0.29 min for DP, which was followed by 5.46 ± 0.18 min for UA, and 13.95 ± 1.24 min for LP. Upon drying of fully activated lichen thallus, there was a slow decay, in hours, of relative water content (RWC) as well as of Fv/Fm. Raman spectral signatures were different for lichens having algal (in DP and UA) and cyanobacteria (in LP) photobionts, and there was a significant shift in ν1(C=C) Raman band of carotenoids post 24 h hydration as compared to their value at a dry state or post 4 h of hydration; this shift was decreased, when drying, in DP and LP but not in UA. We conclude that hydration nonlinearly activated photosynthetic apparatus/reactions of these lichens in minute time range but there was a de-novo synthesis of chlorophylls as well as of carotenoids post 24 h. Their dehydration-induced deactivation, however, was comparatively slow, in hours range, and there seemed a degradation of synthesized chlorophylls and carotenoids post dryness. We conclude that in extremophilic lichens, their photosynthetic partners, in particular, possess a complex survival and photoprotective strategy to be successful in the extreme terrestrial environments in Antarctica.
- MeSH
- Ascomycota MeSH
- chlorofyl a MeSH
- chlorofyl MeSH
- fluorescence MeSH
- fotosyntéza MeSH
- karotenoidy metabolismus MeSH
- lišejníky * metabolismus MeSH
- Ramanova spektroskopie MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Antarktida MeSH
We have used time-resolved absorption and fluorescence spectroscopy with nanosecond resolution to study triplet energy transfer from chlorophylls to carotenoids in a protective process that prevents the formation of reactive singlet oxygen. The light-harvesting complexes studied were isolated from Chromera velia, belonging to a group Alveolata, and Xanthonema debile and Nannochloropsis oceanica, both from Stramenopiles. All three light-harvesting complexes are related to fucoxanthin-chlorophyll protein, but contain only chlorophyll a and no chlorophyll c. In addition, they differ in the carotenoid content. This composition of the complexes allowed us to study the quenching of chlorophyll a triplet states by different carotenoids in a comparable environment. The triplet states of chlorophylls bound to the light-harvesting complexes were quenched by carotenoids with an efficiency close to 100%. Carotenoid triplet states were observed to rise with a ~5 ns lifetime and were spectrally and kinetically homogeneous. The triplet states were formed predominantly on the red-most chlorophylls and were quenched by carotenoids which were further identified or at least spectrally characterized.
- MeSH
- anaerobióza MeSH
- časové faktory MeSH
- chlorofyl metabolismus MeSH
- fluorescenční spektrometrie MeSH
- fotochemické procesy * MeSH
- Heterokontophyta metabolismus MeSH
- karotenoidy metabolismus MeSH
- kinetika MeSH
- proteiny vázající chlorofyl metabolismus MeSH
- světlosběrné proteinové komplexy metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
The slow kinetic phases of the chlorophyll a fluorescence transient (induction) are valuable tools in studying dynamic regulation of light harvesting, light energy distribution between photosystems, and heat dissipation in photosynthetic organisms. However, the origin of these phases are not yet fully understood. This is especially true in the case of prokaryotic oxygenic photoautotrophs, the cyanobacteria. To understand the origin of the slowest (tens of minutes) kinetic phase, the M-T fluorescence decline, in the context of light acclimation of these globally important microorganisms, we have compared spectrally resolved fluorescence induction data from the wild type Synechocystis sp. PCC 6803 cells, using orange (λ = 593 nm) actinic light, with those of mutants, ΔapcD and ΔOCP, that are unable to perform either state transition or fluorescence quenching by orange carotenoid protein (OCP), respectively. Our results suggest a multiple origin of the M-T decline and reveal a complex interplay of various known regulatory processes in maintaining the redox homeostasis of a cyanobacterial cell. In addition, they lead us to suggest that a new type of regulatory process, operating on the timescale of minutes to hours, is involved in dissipating excess light energy in cyanobacteria.
- MeSH
- bakteriální proteiny genetika metabolismus MeSH
- chlorofyl chemie genetika metabolismus MeSH
- diuron chemie MeSH
- fluorescence MeSH
- fluorescenční spektrometrie MeSH
- fykobilizomy genetika metabolismus MeSH
- kyanid draselný chemie MeSH
- luminiscenční měření MeSH
- světlo MeSH
- Synechocystis chemie genetika metabolismus MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
Changes of photosynthetic activity in vivo of individual heterocysts and vegetative cells in the diazotrophic cyanobacterium Anabaena sp. strain PCC 7120 during the course of diazotrophic acclimation were determined using fluorescence kinetic microscopy (FKM). Distinct phases of stress and acclimation following nitrogen step-down were observed. The first was a period of perception, in which the cells used their internally stored nitrogen without detectable loss of PS II activity or pigments. In the second, the stress phase of nitrogen limitation, the cell differentiation occurred and an abrupt decline of fluorescence yield was observed. This decline in fluorescence was not paralleled by a corresponding decline in photosynthetic pigment content and PS II activity. Both maximal quantum yield and sustained electron flow were not altered in vegetative cells, only in the forming heterocysts. The third, acclimation phase started first in the differentiating heterocysts with a recovery of PS II photochemical yields [Formula: see text] Afterwards, the onset of nitrogenase activity was observed, followed by the restoration of antenna pigments in the vegetative cells, but not in the heterocysts. Surprisingly, mature heterocysts were found to have an intact PS II as judged by photochemical yields, but a strongly reduced PS II-associated antenna as judged by decreased F 0. The possible importance of the functional PS II in heterocysts is discussed. Also, the FKM approach allowed to follow in vivo and evaluate the heterogeneity in photosynthetic performance among individual vegetative cells as well as heterocysts in the course of diazotrophic acclimation. Some cells along the filament (so-called "superbright cells") were observed to display transiently increased fluorescence yield, which apparently proceeded by apoptosis.
- MeSH
- aklimatizace fyziologie MeSH
- Anabaena cytologie fyziologie MeSH
- analýza jednotlivých buněk metody MeSH
- biologické pigmenty metabolismus MeSH
- chlorofyl metabolismus MeSH
- dusík nedostatek MeSH
- fluorescenční mikroskopie metody MeSH
- fotosyntéza fyziologie MeSH
- fyziologický stres MeSH
- kinetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Current knowledge of the genetic mechanisms underlying the inheritance of photosynthetic activity in forest trees is generally limited, yet it is essential both for various practical forestry purposes and for better understanding of broader evolutionary mechanisms. In this study, we investigated genetic variation underlying selected chlorophyll a fluorescence (ChlF) parameters in structured populations of Scots pine (Pinus sylvestris L.) grown on two sites under non-stress conditions. These parameters were derived from the OJIP part of the ChlF kinetics curve and characterize individual parts of primary photosynthetic processes associated, for example, with the exciton trapping by light-harvesting antennae, energy utilization in photosystem II (PSII) reaction centers (RCs) and its transfer further down the photosynthetic electron-transport chain. An additive relationship matrix was estimated based on pedigree reconstruction, utilizing a set of highly polymorphic single sequence repeat markers. Variance decomposition was conducted using the animal genetic evaluation mixed-linear model. The majority of ChlF parameters in the analyzed pine populations showed significant additive genetic variation. Statistically significant heritability estimates were obtained for most ChlF indices, with the exception of DI0/RC, φD0 and φP0 (Fv/Fm) parameters. Estimated heritabilities varied around the value of 0.15 with the maximal value of 0.23 in the ET0/RC parameter, which indicates electron-transport flux from QA to QB per PSII RC. No significant correlation was found between these indices and selected growth traits. Moreover, no genotype × environment interaction (G × E) was detected, i.e., no differences in genotypes' performance between sites. The absence of significant G × E in our study is interesting, given the relatively low heritability found for the majority of parameters analyzed. Therefore, we infer that polygenic variability of these indices is selectively neutral.
- MeSH
- borovice lesní genetika fyziologie MeSH
- chlorofyl fyziologie MeSH
- fluorescence MeSH
- fotosyntetické reakční centrum - proteinové komplexy fyziologie MeSH
- fotosyntéza genetika MeSH
- fotosystém II - proteinový komplex fyziologie MeSH
- genetická variace * MeSH
- genotyp * MeSH
- kvantitativní znak dědičný * MeSH
- lesy MeSH
- rostlinné geny MeSH
- stromy genetika fyziologie MeSH
- světlo MeSH
- transport elektronů MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Recent chlorophyll-a fluorescence yield measurements, using single-turnover saturating flashes (STSFs), have revealed the involvement of a rate-limiting step in the reactions following the charge separation induced by the first flash. As also shown here, in diuron-inhibited PSII core complexes isolated from Thermosynechococcus vulcanus the fluorescence maximum could only be reached by a train of STSFs. In order to elucidate the origin of the fluorescence yield increments in STSF series, we performed transient absorption measurements at 819 nm, reflecting the photooxidation and re-reduction kinetics of the primary electron donor P680. Upon single flash excitation of the dark-adapted sample, the decay kinetics could be described with lifetimes of 17 ns (∼50%) and 167 ns (∼30%), and a longer-lived component (∼20%). This kinetics are attributed to re-reduction of P680•+ by the donor side of PSII. In contrast, upon second-flash (with Δt between 5 μs and 100 ms) or repetitive excitation, the 819 nm absorption changes decayed with lifetimes of about 2 ns (∼60%) and 10 ns (∼30%), attributed to recombination of the primary radical pair P680•+ Pheo•- , and a small longer-lived component (∼10%). These data confirm that only the first STSF is capable of generating stable charge separation - leading to the reduction of QA ; and thus, the fluorescence yield increments elicited by the consecutive flashes must have a different physical origin. Our double-flash experiments indicate that the rate-limiting steps, detected by chlorophyll-a fluorescence, are not correlated with the turnover of P680.
Chromera velia is an alveolate alga associated with scleractinian corals. Here we present detailed work on chromatic adaptation in C. velia cultured under either blue or red light. Growth of C. velia under red light induced the accumulation of a light harvesting antenna complex exhibiting unusual spectroscopic properties with red-shifted absorption and atypical 710nm fluorescence emission at room temperature. Due to these characteristic features the complex was designated "Red-shifted Chromera light harvesting complex" (Red-CLH complex). Its detailed biochemical survey is described in the accompanying paper (Bina et al. 2013, this issue). Here, we show that the accumulation of Red-CLH complex under red light represents a slow acclimation process (days) that is reversible with much faster kinetics (hours) under blue light. This chromatic adaptation allows C. velia to maintain all important parameters of photosynthesis constant under both light colors. We further demonstrated that the C. velia Red-CLH complex is assembled from a 17kDa antenna protein and is functionally connected to photosystem II as it shows variability of chlorophyll fluorescence. Red-CLH also serves as an additional locus for non-photochemical quenching. Although overall rates of oxygen evolution and carbon fixation were similar for both blue and red light conditions, the presence of Red-CLH in C. velia cells increases the light harvesting potential of photosystem II, which manifested as a doubled oxygen evolution rate at illumination above 695nm. This data demonstrates a remarkable long-term remodeling of C. velia light-harvesting system according to light quality and suggests physiological significance of 'red' antenna complexes.
- MeSH
- 2D gelová elektroforéza MeSH
- chlorofyl metabolismus MeSH
- elektroforéza v polyakrylamidovém gelu MeSH
- fluorescenční spektrometrie MeSH
- fotosyntetické reakční centrum - proteinové komplexy metabolismus MeSH
- fotosyntéza MeSH
- fyziologická adaptace MeSH
- kinetika MeSH
- mikrořasy fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH