Driouich, Jean-Sélim* Dotaz Zobrazit nápovědu
The flavivirus, tick-borne encephalitis virus (TBEV) is transmitted by Ixodes spp. ticks and may cause severe and potentially lethal neurological tick-borne encephalitis (TBE) in humans. Studying TBEV requires the use of secondary methodologies to detect the virus in infected cells. To overcome this problem, we rationally designed and constructed a recombinant reporter TBEV that stably expressed the mCherry reporter protein. The resulting TBEV reporter virus (named mCherry-TBEV) and wild-type parental TBEV exhibited similar growth kinetics in cultured cells; however, the mCherry-TBEV virus produced smaller plaques. The magnitude of mCherry expression correlated well with progeny virus production but remained stable over <4 passages in cell culture. Using well-characterized antiviral compounds known to inhibit TBEV, 2'-C-methyladenosine and 2'-deoxy-2'-β-hydroxy-4'-azidocytidine (RO-9187), we demonstrated that mCherry-TBEV is suitable for high-throughput screening of antiviral drugs. Serum samples from a TBEV-vaccinated human and a TBEV-infected dog were used to evaluate the mCherry-based neutralization test. Collectively, recombinant mCherry-TBEV reporter virus described here provides a powerful tool to facilitate the identification of potential antiviral agents, and to measure levels of neutralizing antibodies in human and animal sera.
- MeSH
- antivirové látky izolace a purifikace MeSH
- buněčné linie MeSH
- klíšťová encefalitida imunologie virologie MeSH
- křečci praví MeSH
- ledviny cytologie MeSH
- lidé MeSH
- luminescentní proteiny genetika MeSH
- neutralizační testy * MeSH
- neutralizující protilátky krev MeSH
- protilátky virové krev MeSH
- rychlé screeningové testy metody MeSH
- viry klíšťové encefalitidy genetika růst a vývoj MeSH
- zvířata MeSH
- Check Tag
- křečci praví MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The adenosine analogue galidesivir (BCX4430), a broad-spectrum RNA virus inhibitor, has entered a phase 1 clinical safety and pharmacokinetics study in healthy subjects and is under clinical development for treatment of Ebola and yellow fever virus infections. Moreover, galidesivir also inhibits the reproduction of tick-borne encephalitis virus (TBEV) and numerous other medically important flaviviruses. Until now, studies of this antiviral agent have not yielded resistant viruses. Here, we demonstrate that an E460D substitution in the active site of TBEV RNA-dependent RNA polymerase (RdRp) confers resistance to galidesivir in cell culture. Galidesivir-resistant TBEV exhibited no cross-resistance to structurally different antiviral nucleoside analogues, such as 7-deaza-2'-C-methyladenosine, 2'-C-methyladenosine, and 4'-azido-aracytidine. Although the E460D substitution led to only a subtle decrease in viral fitness in cell culture, galidesivir-resistant TBEV was highly attenuated in vivo, with a 100% survival rate and no clinical signs observed in infected mice. Furthermore, no virus was detected in the sera, spleen, or brain of mice inoculated with the galidesivir-resistant TBEV. Our results contribute to understanding the molecular basis of galidesivir antiviral activity, flavivirus resistance to nucleoside inhibitors, and the potential contribution of viral RdRp to flavivirus neurovirulence.IMPORTANCE Tick-borne encephalitis virus (TBEV) is a pathogen that causes severe human neuroinfections in Europe and Asia and for which there is currently no specific therapy. We have previously found that galidesivir (BCX4430), a broad-spectrum RNA virus inhibitor, which is under clinical development for treatment of Ebola and yellow fever virus infections, has a strong antiviral effect against TBEV. For any antiviral drug, it is important to generate drug-resistant mutants to understand how the drug works. Here, we produced TBEV mutants resistant to galidesivir and found that the resistance is caused by a single amino acid substitution in an active site of the viral RNA-dependent RNA polymerase, an enzyme which is crucial for replication of the viral RNA genome. Although this substitution led only to a subtle decrease in viral fitness in cell culture, galidesivir-resistant TBEV was highly attenuated in a mouse model. Our results contribute to understanding the molecular basis of galidesivir antiviral activity.
- MeSH
- adenin analogy a deriváty chemie farmakologie MeSH
- alely MeSH
- antibiotická rezistence MeSH
- antivirové látky chemie farmakologie MeSH
- buněčné linie MeSH
- genotyp MeSH
- klíšťová encefalitida farmakoterapie virologie MeSH
- modely nemocí na zvířatech MeSH
- mutace * MeSH
- myši MeSH
- pyrrolidiny chemie farmakologie MeSH
- substituce aminokyselin * MeSH
- virová léková rezistence * MeSH
- virové nestrukturální proteiny genetika MeSH
- viry klíšťové encefalitidy účinky léků fyziologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH