The fungus Monascus is a well-known source of secondary metabolites with interesting pharmaceutical and nutraceutical applications. In particular, Monascus pigments possess a wide range of biological activities (e.g. antimicrobial, antioxidant, anti-inflammatory or antitumoral). To broaden the scope of their possible application, this study focused on testing Monascus pigment extracts as potential photosensitizing agents efficient in antimicrobial photodynamic therapy (aPDT) against bacteria. For this purpose, eight different extracts of secondary metabolites from the liquid- and solid-state fermentation of Monascus purpureus DBM 4360 and Monascus sp. DBM 4361 were tested against Gram-positive and Gram-negative model bacteria, Bacillus subtilis and Escherichia coli and further screened for ESKAPE pathogens, Staphylococcus aureus and Pseudomonas aeruginosa. To the bacterial culture, increasing concentration of extracts was added and it was found that all extracts showed varying antimicrobial activity against Gram-positive bacteria in dark, which was further increased after irradiation. Gram-negative bacteria were tolerant to the extracts' exposure in the dark but sensitivity to almost all extracts that occurred after irradiation. The Monascus sp. DBM 4361 extracts seemed to be the best potential candidate for aPDT against Gram-positive bacteria, being efficient at low doses, i.e. the lowest total concentration of Monascus pigments exhibiting aPDT effect was 3.92 ± 1.36 mg/L for E. coli. Our results indicate that Monascus spp., forming monascuspiloin as the major yellow pigment and not-forming mycotoxin citrinin, is a promising source of antimicrobials and photoantimicrobials.
- MeSH
- Anti-Bacterial Agents * pharmacology chemistry MeSH
- Pigments, Biological pharmacology MeSH
- Biological Products pharmacology chemistry MeSH
- Photochemotherapy MeSH
- Photosensitizing Agents pharmacology chemistry MeSH
- Gram-Positive Bacteria drug effects radiation effects MeSH
- Complex Mixtures pharmacology chemistry MeSH
- Microbial Sensitivity Tests * MeSH
- Monascus * chemistry metabolism MeSH
- Mycelium * chemistry radiation effects drug effects MeSH
- Publication type
- Journal Article MeSH
A small receptor molecule composed of a porphyrin core with tetrakis-ammonium glycine pickets (liptin 3e) appears to target anionic phosphatidylglycerol (PG) lipid head groups through multifunctional binding-pocket complementarity. Although a major component of bacterial cell membranes, PG is not widely found in animal cells, making PG potentially selective for bacterial targeting. Growth of microbial isolates was monitored in liquid cultures treated with liptin 3e by dilution plate counts and turbidity. Inhibition of growth by liptin 3e was observed for the ESKAPE human pathogens (Enterobacter aerogenes, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterococcus faecium), Escherichia coli, Mycobacterium smegmatis, Streptococcus sobrinus, and methicillin-resistant S. aureus (MRSA), with certain species suppressed at <1 μg/mL (sub-μM) concentrations. Prolonged lag phases were observed, although cell viability was mainly unaffected, suggesting that liptin treatment caused bacteriostasis. Cultures treated with liptin 3e eventually recovered, resumed growth, and reached the same final densities as untreated cultures. Growth of the fungus Candida albicans was not appreciably inhibited by liptin 3e. If liptins exhibit bacteriostasis through broad extracellular binding to PG head groups, thereby disrupting cellular processes, liptins may be considered for development into preclinical drug candidates or be useful as a targeting system for molecular beacons or antibacterial drugs.
- MeSH
- Anti-Bacterial Agents pharmacology MeSH
- Enterococcus faecium * MeSH
- Escherichia coli MeSH
- Phosphatidylglycerols MeSH
- Humans MeSH
- Methicillin-Resistant Staphylococcus aureus * MeSH
- Microbial Sensitivity Tests MeSH
- Receptors, Artificial * MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
The rise in multidrug-resistant bacteria defines the need for identification of new antibacterial agents that are less prone to resistance acquisition. Compounds that simultaneously inhibit multiple bacterial targets are more likely to suppress the evolution of target-based resistance than monotargeting compounds. The structurally similar ATP binding sites of DNA gyrase and topoisomerase Ⅳ offer an opportunity to accomplish this goal. Here we present the design and structure-activity relationship analysis of balanced, low nanomolar inhibitors of bacterial DNA gyrase and topoisomerase IV that show potent antibacterial activities against the ESKAPE pathogens. For inhibitor 31c, a crystal structure in complex with Staphylococcus aureus DNA gyrase B was obtained that confirms the mode of action of these compounds. The best inhibitor, 31h, does not show any in vitro cytotoxicity and has excellent potency against Gram-positive (MICs: range, 0.0078-0.0625 μg/mL) and Gram-negative pathogens (MICs: range, 1-2 μg/mL). Furthermore, 31h inhibits GyrB mutants that can develop resistance to other drugs. Based on these data, we expect that structural derivatives of 31h will represent a step toward clinically efficacious multitargeting antimicrobials that are not impacted by existing antimicrobial resistance.
- MeSH
- Adenosine Triphosphate chemical synthesis chemistry pharmacology MeSH
- Anti-Bacterial Agents chemical synthesis chemistry pharmacology MeSH
- DNA Gyrase metabolism MeSH
- DNA Topoisomerase IV antagonists & inhibitors metabolism MeSH
- Escherichia coli drug effects enzymology pathogenicity MeSH
- Crystallography, X-Ray MeSH
- Microbial Sensitivity Tests MeSH
- Molecular Structure MeSH
- Molecular Docking Simulation MeSH
- Staphylococcus aureus drug effects enzymology pathogenicity MeSH
- Dose-Response Relationship, Drug MeSH
- Structure-Activity Relationship MeSH
- Publication type
- Journal Article MeSH