Kalinowski, Jörn* Dotaz Zobrazit nápovědu
Transcription initiation is the key step in gene expression in bacteria, and it is therefore studied for both theoretical and practical reasons. Promoters, the traffic lights of transcription initiation, are used as construction elements in biotechnological efforts to coordinate 'green waves' in the metabolic pathways leading to the desired metabolites. Detailed analyses of Corynebacterium glutamicum promoters have already provided large amounts of data on their structures, regulatory mechanisms and practical capabilities in metabolic engineering. In this minireview the main aspects of promoter studies, the methods developed for their analysis and their practical use in C. glutamicum are discussed. These include definitions of the consensus sequences of the distinct promoter classes, promoter localization and characterization, activity measurements, the functions of transcriptional regulators and examples of practical uses of constitutive, inducible and modified promoters in biotechnology. The implications of the introduction of novel techniques, such as in vitro transcription and RNA sequencing, to C. glutamicum promoter studies are outlined.
- MeSH
- bakteriální proteiny genetika metabolismus MeSH
- biotechnologie metody MeSH
- Corynebacterium glutamicum genetika metabolismus MeSH
- genetická transkripce MeSH
- konsenzuální sekvence MeSH
- metabolické sítě a dráhy MeSH
- molekulární sekvence - údaje MeSH
- promotorové oblasti (genetika) genetika MeSH
- regulace genové exprese u bakterií * MeSH
- sekvence nukleotidů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
BACKGROUND: Sigma factors are one of the components of RNA polymerase holoenzymes, and an essential factor of transcription initiation in bacteria. Corynebacterium glutamicum possesses seven genes coding for sigma factors, most of which have been studied to some detail; however, the role of SigD in transcriptional regulation in C. glutamicum has been mostly unknown. RESULTS: In this work, pleiotropic effects of sigD overexpression at the level of phenotype, transcripts, proteins and metabolites were investigated. Overexpression of sigD decreased the growth rate of C. glutamicum cultures, and induced several physiological effects such as reduced culture foaming, turbid supernatant and cell aggregation. Upon overexpression of sigD, the level of Cmt1 (corynomycolyl transferase) in the supernatant was notably enhanced, and carbohydrate-containing compounds were excreted to the supernatant. The real-time PCR analysis revealed that sigD overexpression increased the expression of genes related to corynomycolic acid synthesis (fadD2, pks), genes encoding corynomycolyl transferases (cop1, cmt1, cmt2, cmt3), L, D-transpeptidase (lppS), a subunit of the major cell wall channel (porH), and the envelope lipid regulation factor (elrF). Furthermore, overexpression of sigD resulted in trehalose dicorynomycolate accumulation in the cell envelope. CONCLUSIONS: This study demonstrated that SigD regulates the synthesis of corynomycolate and related compounds, and expanded the knowledge of regulatory functions of sigma factors in C. glutamicum.
The sigma H (σΗ) and sigma E (σE) subunits of Corynebacterium glutamicum RNA polymerase belong to Group 4 of sigma factors, also called extracytoplasmic function (ECF) sigma factors. Genes of the C. glutamicum σΗ regulon that are involved in heat and oxidative stress response have already been defined, whereas the genes of the σE regulon, which is involved in cell surface stress response, have not been explored until now. Using the C. glutamicum RES167 strain and its derivative C. glutamicum ΔcseE with a deletion in the anti-σΕ gene, differential gene expression was analyzed by RNA sequencing. We found 296 upregulated and 398 downregulated genes in C. glutamicum ΔcseE compared to C. glutamicum RES167. To confirm the functional link between σΕ and the corresponding promoters, we tested selected promoters using the in vivo two-plasmid system with gfpuv as a reporter gene and by in vitro transcription. Analyses with RNAP+σΗ and RNAP+σΕ, which were previously shown to recognize similar promoters, proved that the σΗ and σE regulons significantly overlap. The σE-controlled genes were found to be involved for example in protein quality control (dnaK, dnaJ2, clpB, and clpC), the regulation of Clp proteases (clgR), and membrane integrity maintenance. The single-promoter analyses with σΗ and σΕ revealed that there are two groups of promoters: those which are exclusively σΗ-specific, and the other group of promoters, which are σΗ/σE-dependent. No exclusively σE-dependent promoter was detected. We defined the consensus sequences of exclusively σΗ-regulated promotors to be -35 GGAAt and - 10 GTT and σΗ/σE-regulated promoters to be -35 GGAAC and - 10 cGTT. Fifteen genes were found to belong to the σΗ/σΕ regulon. Homology modeling showed that there is a specific interaction between Met170 in σΗ and the nucleotides -31 and - 30 within the non-coding strand (AT or CT) of the σΗ-dependent promoters. In σE, Arg185 was found to interact with the nucleotides GA at the same positions in the σE-dependent promoters.
- Publikační typ
- časopisecké články MeSH
Corynebacterium glutamicum ATCC 13032 harbors five sigma subunits of RNA polymerase belonging to Group IV, also called extracytoplasmic function (ECF) σ factors. These factors σC, σD, σE, σH, and σM are mostly involved in stress responses. The role of σD consists in the control of cell wall integrity. The σD regulon is involved in the synthesis of components of the mycomembrane which is part of the cell wall in C. glutamicum. RNA sequencing of the transcriptome from a strain overexpressing the sigD gene provided 29 potential σD-controlled genes and enabled us to precisely localize their transcriptional start sites. Analysis of the respective promoters by both in vitro transcription and the in vivo two-plasmid assay confirmed that transcription of 11 of the tested genes is directly σD-dependent. The key sequence elements of all these promoters were found to be identical or closely similar to the motifs -35 GTAACA/G and -10 GAT. Surprisingly, nearly all of these σD-dependent promoters were also active to a much lower extent with σHin vivo and one (Pcg0607) also in vitro, although the known highly conserved consensus sequence of the σH-dependent promoters is different (-35 GGAAT/C and -10 GTT). In addition to the activity of σH at the σD-controlled promoters, we discovered separated or overlapping σA- or σB-regulated or σH-regulated promoters within the upstream region of 8 genes of the σD-regulon. We found that phenol in the cultivation medium acts as a stress factor inducing expression of some σD-dependent genes. Computer modeling revealed that σH binds to the promoter DNA in a similar manner as σD to the analogous promoter elements. The homology models together with mutational analysis showed that the key amino acids, Ala 60 in σD and Lys 53 in σH, bind to the second nucleotide within the respective -10 promoter elements (GAT and GTT, respectively). The presented data obtained by integrating in vivo, in vitro and in silico approaches demonstrate that most of the σD-controlled genes also belong to the σH-regulon and are also transcribed from the overlapping or closely located housekeeping (σA-regulated) and/or general stress (σB-regulated) promoters.
- Publikační typ
- časopisecké články MeSH