BACKGROUND: The Heartmate 3 (HM3) is a Conformiteé Européenne mark-approved left ventricular (LV) assist device (LVAD) with fully magnetically levitated rotor and features consisting of a wide range operational speeds, wide flow paths, and artificial pulse. We performed a hemodynamic-echocardiographic speed optimization evaluation in HM3-implanted patients to achieve optimal LV- and right ventricular (RV) shape. METHODS AND RESULTS: Sixteen HM3 patients underwent pump speed ramp tests with right heart catheterization. Three-dimensional echocardiographic (3DE) LV and RV datasets (Philips) were acquired, and volumetric (Tomtec) and shape (custom software) analyses were performed (LV: sphericity, conicity; RV: septal and free-wall curvatures). Data were recorded at up to 13 speed settings. Speed changes were in 100-rpm steps, starting at 4600 rpm and ramping up to 6200 rpm. 3DE was feasible in 50% of the patients. Mean original speed was 5306 ± 148 rpm. LV end-diastolic (ED) diameter (-0.15 ± 0.09 cm/100 rpm) and volumes (ED: 269 ± 109 mL to 175 ± 90 mL; end-systolic [ES]: 234 ± 111 mL to 146 ± 81 mL) progressively decreased as the shape became less spherical and more conical; RV volumes initially remained stable, but at higher speeds increased (ED: from 148 ± 64 mL to 181 ± 92 mL; ES: 113 ± 63 mL to 130 ± 69 mL). On average, the RV septum became less convex (bulging toward the LV) at the highest speeds. CONCLUSIONS: LV and RV shape changes were noted in HM3-supported patients. Although a LV volumetric decrease and shape improvement was consistently noted, RV volumes grew in response to increase in speed above a certain point. A next concern would be whether understanding of morphologic and function changes in LV and RV during LVAD speed change assessed with the use of 3DE helps to optimize LVAD speed settings and improve clinical outcomes.
- MeSH
- Echocardiography, Three-Dimensional trends MeSH
- Middle Aged MeSH
- Humans MeSH
- Magnetic Field Therapy methods trends MeSH
- Heart-Assist Devices trends MeSH
- Prospective Studies MeSH
- Aged MeSH
- Cardiac Catheterization methods trends MeSH
- Heart Ventricles diagnostic imaging surgery MeSH
- Heart Failure diagnostic imaging therapy MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Multicenter Study MeSH
- Observational Study MeSH
BACKGROUND: The HeartMate 3 (HM3) is a Conformiteé Européenne (CE) mark-approved left ventricular assist device (LVAD) with a fully magnetically levitated rotor with features consisting of a wide range of operational speeds, wide flow paths and an artificial pulse. We performed a hemodynamic and echocardiographic evaluation of patients implanted with the HM3 LVAD to assess the speed range for optimal hemodynamic support. METHODS: Sixteen HM3 patients underwent pump speed ramp tests with right heart catheterization (including central venous pressure [CVP], pulmonary artery pressure, pulmonary capillary wedge pressure [PCWP] and blood pressure [BP]) and 3-dimensional echocardiography (3DE). Data were recorded at up to 13 speed settings. Speed changes were in steps of 100 revolutions per minute (rpm), starting at 4,600 rpm and ramping up to 6,200 rpm. RESULTS: Mean original speed was 5,306 ± 148 rpm, with a majority of patients (10 of 16, 62.5%) having normal CVPs and PCWPs at their original rpm settings. Going from lowest to highest speeds, cardiac output improved at the rate of 0.08 ± 0.08 liter/min per 100 rpm (total change 1.25 ± 1.20 liters/min) and PCWP decreased at the rate of -0.48 ± 0.27 mm Hg per 100 rpm (total change -6.13 ± 3.72 mm Hg). CVP and systolic BP did not change significantly with changes in rpm. Left ventricular end-diastolic dimension (LVEDD) decreased at a rate of -0.15 ± 0.09 cm per 100 rpm. Number of rpm was adjusted based on test results to achieve CVPs and PCWPs as close to normal limits as possible, which was feasible in 13 (81.3%) patients. For the remaining 3 patients, medical management was pursued to optimize hemodynamic support. CONCLUSION: Hemodynamic normalization of pressures was achieved in the majority of patients implanted with the HM3 pump within a narrow speed range.
- MeSH
- Time Factors MeSH
- Equipment Design MeSH
- Ventricular Function, Left physiology MeSH
- Hemodynamics physiology MeSH
- Humans MeSH
- Magnetics instrumentation MeSH
- Follow-Up Studies MeSH
- Heart-Assist Devices * MeSH
- Prospective Studies MeSH
- Aged MeSH
- Heart Failure physiopathology surgery MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Multicenter Study MeSH
BACKGROUND: The HeartMate 3 left ventricular assist system (LVAS) is intended to provide long-term support to patients with advanced heart failure. The centrifugal flow pump is designed for enhanced hemocompatibility by incorporating a magnetically levitated rotor with wide blood-flow paths and an artificial pulse. OBJECTIVES: The aim of this single-arm, prospective, multicenter study was to evaluate the performance and safety of this LVAS. METHODS: The primary endpoint was 6-month survival compared with INTERMACS (Interagency Registry for Mechanically Assisted Circulatory Support)-derived performance goal. Patients were adults with ejection fraction ≤ 25%, cardiac index ≤ 2.2 l/min/m(2) without inotropes or were inotrope-dependent on optimal medical management, or listed for transplant. RESULTS: Fifty patients were enrolled at 10 centers. The indications for LVAS support were bridge to transplantation (54%) or destination therapy (46%). At 6 months, 88% of patients continued on support, 4% received transplants, and 8% died. Thirty-day mortality was 2% and 6-month survival 92%, which exceeded the 88% performance goal. Support with the fully magnetically levitated LVAS significantly reduced mortality risk by 66% compared with the Seattle Heart Failure Model-predicted survival of 78% (p = 0.0093). Key adverse events included reoperation for bleeding (14%), driveline infection (10%), gastrointestinal bleeding (8%), and debilitating stroke (modified Rankin Score > 3) (8%). There were no pump exchanges, pump malfunctions, pump thrombosis, or hemolysis events. New York Heart Association classification, 6-min walk test, and quality-of-life scores showed progressive and sustained improvement. CONCLUSIONS: The results show that the fully magnetically levitated centrifugal-flow chronic LVAS is safe, with high 30-day and 6-month survival rates, a favorable adverse event profile, and improved quality of life and functional status. (HeartMate 3™ CE Mark Clinical Investigation Plan [HM3 CE Mark]; NCT02170363).
- MeSH
- Survival Analysis MeSH
- Equipment Design * MeSH
- Long-Term Care methods MeSH
- Hemodynamics * MeSH
- Cardiotonic Agents therapeutic use MeSH
- Middle Aged MeSH
- Humans MeSH
- Heart-Assist Devices * MeSH
- Prospective Studies MeSH
- Aged MeSH
- Heart Ventricles physiopathology MeSH
- Heart Failure * diagnosis mortality physiopathology surgery MeSH
- Severity of Illness Index MeSH
- Stroke Volume MeSH
- Heart Transplantation statistics & numerical data MeSH
- Treatment Outcome MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Clinical Trial MeSH
- Multicenter Study MeSH
- Research Support, Non-U.S. Gov't MeSH